ICT Boosts the Energy Internet Era

Large-scale electricity networks become modernized with the addition of ICT connectivity and information services. (p34)

Key “Things” about Energy

An Interview with Sanqi Li, Huawei Chief Scientist (p26)
Huawei’s Vision for the Energy Internet

By David He, President, Marketing and Solution Sales, Huawei Enterprise Business Group

Energy transformation has reached a crossroads. Global primary energy consumption in 2010 was about 550 exajoules, nearly 25 times higher than in 1830 [www.theoildrum.com/node/8936]. Each exajoule is equal to 174 million barrels of oil. Compared with a century ago, we are burning ten times more energy today to support the global production of goods and services. Still, fifteen years into the Millennium, half of the world’s population, including 1.2 billion children, lacks adequate access to electricity.

Facing a number of challenging energy issues, such as resource shortages, low efficiency, unbalanced regional development, and environmental pollution, in 2008, the German Federal Ministry of Economics and Technology initiated the “E-Energy: ICT-based Energy System of the Future” project to build a digitally connected, controlled, and monitored energy network. In the same year, the US National Science Foundation Future Renewable Electric Energy Delivery and Management (FREEDM) Systems Center was founded at North Carolina State University to conceptualize a plug-and-play architecture for electric power distribution suitable for renewable energy and energy storage devices. In June 2015, the China National Energy Administration officially released the Energy Internet Action Outline and identified twelve supporting research projects in June 2015. Regardless of the strategy, the Energy Internet is pushing the entire energy industry to “full connectivity.”

Among many examples, ICT-equipped Photovoltaic (PV) devices have increased the efficiency of solar power converters by more than three percent. Agile communication networks swiftly adapt to multidimensional topology changes over energy networks. Using Big Data technologies, oil companies are improving the success rate for oil exploration, and electric power providers are calculating load predictions and pro-actively preventing accidents.

As is familiar from the transformations of the finance and telecommunications industries, those who embrace the change will become the new industry leaders.

Huawei is working with energy enterprises, providing them with innovative ICT solutions that help the energy industry transform their production modes and explore new business models.
1 Huawei’s Vision for the Energy Internet

[Features]

4 Energy Internet — Not a Simple Equation
6 Extracting Full Value from Electric Utility Monitoring Schemes
10 China’s Internet+ Route to Energy Intelligence
13 Digital Transformation Is Redefining Oil & Gas
14 ICT Innovation Empowers the Smart Grid
20 The Digital Energy Platform (R)evolution
23 Mobility in the Oil and Gas Industry
24 Energy Internet Paradigm Raises Core Issues

[Special Report]

26 Key “Things” about Energy — An Interview with Sanqi Li, Huawei Chief Scientist
34 ICT Boosts the Energy Internet Era

[Focus]

40 Enabling Interactive Electrical Grids
42 Preparing Smart Grids for IP/MPLS Networks
45 China National Petroleum Corporation Transitions to IPv6
48 Prediction Models for Oilfield Production

50 Sinopec Jiujiang Pioneers an Intelligent Factory
52 Achieving Grid Parity with Photovoltaics
55 Remote Management Secures Vital Gas Pipeline
58 Huawei’s IoT Vision for the Digital Oilfield

[Book Review]

60 The Third Industrial Revolution
With the inception of the Internet+ era, circa 2015, debate over defining the Energy Internet has begun. So far, even the simplest definition of the concept, using the most accurate technical language, has not delivered a single, clear specification that encapsulates the full scope of technical innovations and business models the industry aspires to achieve. Persistent digitalization and the evolution of “Smart Grids” are the first, most critical factors contributing to the birth of the Energy Internet. European Technology Platform for the Electricity Networks of the Future — the Energy Internet Platform for the Electricity Networks of the Future — the European Union’s (EU) members have been privatizing power utilities for more than 10 years following Germany’s putting the nation’s first, most critical factors contributing to the birth of the Energy Internet. European Technology Platform for the Electricity Networks of the Future — the Energy Internet Platform for the Electricity Networks of the Future. The platform is working to bring alternative energy sources into primary power grids through the use of incentives to encourage greater efficiency. “Energy plus Internet” will be achieved by ICT-enabled information exchanges and distribution platforms that allow power resources to be accessed and managed through the universe of mobile, PC, and Internet connected appliance-based applications.

As more IoT services become commercially available, consumers will find multiple options tailored to suit individual cases. In practice, “Energy plus Internet” will be achieved by ICT-enabled information exchanges and distribution platforms that allow power resources to be accessed and managed through the universe of mobile, PC, and Internet connected appliance-based applications.
By John D. McDonald, PE, Director of Technical Strategy and Policy Development, GE Energy Management Digital Energy

Extracting Full Value from Electric Utility Monitoring Schemes

A Holistic Approach

Implementing the communication and presentation of non-operational data to enterprise users is complex and demands thinking outside traditional silos. Third-party facilitation is essential to keep participants motivated, cooperative, and focused on the end result. Once completed, however, the effort unlocks significant value in resolving business problems, supporting a condition-based maintenance program, and laying the groundwork for future expansion. Specifically, with a good information architecture, new IEDs can be added to the same data-handling arrangement as defined by three types of plans: a data map that includes all IED outputs (data points), an IED template that matches the data points to stakeholders’ needs in the utility, and a matrix showing the attributes (e.g., frequency of sampling) that non-operational data must take for each stakeholder. These plans define how non-operational IED data is extracted, routed, and presented. Ideally, the substation automation system, such as Supervisory Control and Data Acquisition (SCADA), extracts operational and non-operational data from IEDs on transformers and in substations, and protection and control equipment using data concentrators. Operational data then goes to the control center via a secure network with stringent response requirements. Non-operational data needs a network with higher bandwidth for digitized waveforms and sequence-of-events reports, but this network has lower requirements for security and latency. Intelligence requires constant communication. In essence, the transformer M&D and substation automation makes no sense without always-on communications networks.

Operational data must reach the control center via a secure network with stringent response requirements. Non-operational data needs a network with higher bandwidth for digitized waveforms and sequence-of-events reports, but this network has lower requirements for security and latency. Intelligence requires constant communication. In essence, the transformer M&D and substation automation makes no sense without always-on communications networks. Designing an information architecture to deliver non-operational data to business managers requires matching their needs to the data sources. A virtual data model captures operational, non-operational data for processing into actionable business intelligence.

Data for Business Units

To design a transformer M&D and substation automation scheme that make best use of the data, that data must be delivered to the right people at the right place and time in a useful format. Presentation is integral to the outcome. Applications turn data into information, and after further analysis, formats such as dashboards translate the information into actionable business intelligence. The dashboards must be tailored to each business unit’s needs. For non-operational data, business unit managers and operations groups are likely to see the data. More than two dozen business units can make use of the non-operational data generated by transformer M&D and substation IEDs. These business units include maintenance, asset management, power quality, planning, and engineering groups.

The initial step in designing an information architecture to deliver non-operational data is to query business managers about who needs the data, the sort and form needed, and the specific time intervals for capture. The resulting document becomes a resource referred to as an “enterprise-wide data requirements matrix.” Enterprise users must take inventory of available IEDs and corresponding data maps. Users possibly aided by outside consultation must determine which formats best serve their needs. The availability of non-operational data and archived operational data may be new to many people.

Creating an IED Template

After inventory, managers must determine which points in each data map have value for stakeholders by creating IED templates. This task is complex, partly because IED characteristics vary by model and vendor. Each model may yield different types of data in different ways. Therefore, every device’s characteristics and data outputs must be documented to complete this step. These characteristics might include a sampling rate that results in a recorded value every two seconds. The available data might represent a mathematical outcome of that sampling or might be event-driven. A user might need only the peak or average value for each hour. Perhaps a specific data point is only relevant to a user when the value exceeds a pre-determined threshold.

For non-operational data, business unit managers and operations groups are likely to see the data. More than two dozen business units can make use of the non-operational data generated by transformer M&D and substation IEDs. These business units include maintenance, asset management, power quality, planning, and engineering groups.
Data has little value until processing converts it into comprehensible information. Further processing, which information into business intelligence.

Users must determine whether the range, average, or some other data variant is useful. The IED templates and data requirements matrix determine the network architecture required to capture and communicate data from the IEDs to enterprise users. The templates and data matrix require accuracy to produce useful results for the enterprise.

Data Marts

To reach end users, non-operational data is extracted from the IEDs, gathered by a data concentrator, and conveyed by networks through the enterprise firewall to a virtual data mart. Once there, the data is processed for all enterprise network applications. The term “virtual” refers to a data server that sits on top of and is logically linked to a utility’s data consolidation.

Many utilities rely on several data repositori. This approach adds a federated data server, which manages and routes all enterprise network data. Stored data is transparent to users because the server is logically linked to all data repositori; the server simply finds and delivers requested data.

Enterprise users can request operational data from the enterprise data mart, which is populated from the control center historian (operational SCADA historian). Typically, the internal operations SCADA historian contains the operational data required for day-by-day operations, and the external SCADA historian contains a subset of operational data for use by stakeholder groups. The internal SCADA historian is within the firewall of operations, and the external SCADA historian is outside the firewall of operations. The operations SCADA historians contain a time series of data at a predetermined sampling rate.

To extract maximum value from IED/networking investments, the data management plan must ensure that every potential end user in a utility has desktop access to non-operational and operational data. This fundamental consideration must govern the design of the communications networks and all related work.

Converting Data

Data has little value until processing converts it into comprehensible information. Further processing, which can occur at several levels, turns the information into business intelligence.

IEDs or related devices can process data to some extent; other processing can occur in a data concentrator or a substation desktop PC. Processing near the source reduces data amounts that must be communicated upstream for centralized processing.

To produce business intelligence, managers must participate in these activities:

- Referring the necessary data through the data requirements matrix exercise.
- Selecting and learning to use applications that turn that data into actionable intelligence.
- Deciding how outputs are delivered via visualization so business intelligence is understandable and actionable.

Operations and Asset Management

Though operational data from IEDs alert operators to transformer problems, the aim of the data architecture is to avoid a fix-on-fail approach. Utilities can use non-operational data to become more proactive through condition-based asset management and maintenance to improve transformer diagnostics and to extend the useful life of components.

This approach increases grid reliability, quality, and related enterprise value. Patterns may emerge that reveal conditions or operational ap- proaches that harm a transformer’s density. In other words, the exploitation of non-operational data is a boost to transformer M&D and substation automation.

Driving Organizational Change

Success in transformer M&D and substation automation not only relies on technical considerations — it has organizational and cultural implications as well. The need for enterprise-wide engagement in a transformer M&D business case presents organizational and cultural challenges to a utility accustomed to tolerating silos and rivalries. These concerns can result in unresolvable redundant systems. Ultimately, the overarching goal is to increase reliability and safety, extract the full value of M&D investments, and create customer value.

Utilities cannot afford “islands of automation” created by different operations or business units. Enterprise business unit managers must cooperate with other managers across the enterprise in the data mapping phase and data template creation that help make non-operational data from substations available to all. Termination and silos are expensive, inefficient, and unproductive. This is a well-embellished fact of transformer M&D, substation automation, and data mart usage confirmed by case studies.

Traditional advice on how to accomplish these outcomes often centers on executive leadership and management buy-in. Clear direction from utility executives, with an emphasis on staff adaptation and the benefits of working toward the common good, can be effective measures. For a utility staff with an appetite for change, that may be enough — so often it is not. But a utility organization has management tools to ensure that this divide is bridged, perhaps using enterprise-wide metrics in job evaluations and compensation processes. The upside is a stronger business case, better outcomes, and a more nimble organization prepared for even greater changes.

The Grid’s Future

An enterprise-wide, holistic approach to transformer M&D and substation automation leads a utility to select enabling communications networks and to analyze and plan them for the utility’s specific needs. Achieving greater visibility into transformer health and substation functions has a broad impact on other systems and a utility’s business processes and culture.

Strategic planning and implementa- tion provide a classic example of a technology in pursuit of grid modernization and its promise of greater reliability and safety as well as more secure, efficient operations in customer value ser- vices. Therefore, the need for a holistic approach, the impact of case implementation on other systems, and the resulting evolution of business processes and utility culture offer a fundamental process applicable to other grid modernization projects. In fact, improved transformer M&D and substation automation and the changes they propel are just harbinger of changes to come. The full exploitation of operational and non-operational data, relying on enabling communications networks, is only the beginning of the Big Data era for utilities. As grid modernization progresses, new sources of data and new, previously unimagined, uses for the data remain to be discovered and transformed into value for all stakeholders.
China’s Internet+ Route to Energy Intelligence

By Yin Cao, Energy Internet Lead Researcher of Cinda Securities

Long associated with inefficiency and pollution, China’s energy industry has received a push in a positive direction in the past year by the country’s Internet+ initiative. In the 2015 Internet+ action plan, President Li Keqiang refers to “Internet+ intelligent energy” as the national strategy for the Chinese energy industry. The plan outlines a direction for power companies to adopt a step-by-step approach for transitioning to Internet+ intelligent business value generated by Big Data technologies.

"Internet+ intelligent energy" is aimed at maximizing the economic benefits generated by the increasing digitization and decentralization of energy systems. China is the first country to implement the Internet+ strategy for the energy industry. The plan outlines a direction for power companies to adopt a step-by-step approach for transitioning to Internet+ intelligent business value generated by Big Data technologies.

The goal is to enable power companies to evolve to “smart power” systems through equipment digitization — i.e. the addition of sensors and connectivity to their infrastructures — and follow-through to adopt comprehensive levels of intelligence through real-time analytics in preparation for the eventual realization of complete Internet+ systems.

Digital Energy

The first step in the evolution plan is to add an end-to-end layer of digital sensors to existing energy networks. The data captured from this sensing layer enables power companies to see the operating status and ambient conditions of devices and systems at all times in real time. For example, sensors on primary equipment such as transformers can collect voltage, current, frequency, load, temperature, and physical integrity details.

Further, the first-level digitization is uneven across the grid in China. There is a higher proportion of networked sensors in the power generation and transmission equipment of larger cities — where the installation of secondary sensors has begun — but often quite little in smaller cities and rural areas.

Generally, the ability to utilize the sensor data for continuous monitoring of the power distribution network is weak throughout China and nonexistent in small cities and rural areas. Even where sensors are deployed, data collection granularity is not ideal. The low-density data is not able to report the actual operating status of the power system. Further, power producers are unprepared to collect, process, or analyze the massive amounts of unstructured data, such as web logs, video, and audio recordings that pass through their IT systems.

Fortunately, the second step in the evolution plan is to add a comprehensive layer of digital sensors to the sensing layer systems. The data captured from this sensing layer enables power companies to see the operating status and ambient conditions of devices and systems at all times in real time. For example, sensors on primary equipment such as transformers can collect voltage, current, frequency, load, temperature, and physical integrity details.

Unfortunately, the second-level digitization is uneven across the grid in China. There is a higher proportion of networked sensors in the power generation and transmission equipment of larger cities — where the installation of secondary sensors has begun — but often quite little in smaller cities and rural areas.

Generally, the ability to utilize the sensor data for continuous monitoring of the power distribution network is weak throughout China and nonexistent in small cities and rural areas. Even where sensors are deployed, data collection granularity is not ideal. The low-density data is not able to report the actual operating status of the power system. Further, power producers are unprepared to collect, process, or analyze the massive amounts of unstructured data, such as web logs, video, and audio recordings that pass through their IT systems.

Over time, China’s “Internet+” initiative will transform electric power generation, distribution, and consumption. >>

Smart Energy

For the purposes of this article, “smart energy” refers to systems upgrades from first-level digitization platforms that have yet to reach a high level of intelligence. Based upon the potential for comprehensive sensor networks, a smart energy system will implement full-domain control through the interactions between different sub-systems of the power generation and distribution plants. In addition, smart energy systems will provide news and system administrators with multiple optimization schemes tailored to match working conditions and environmental factors in ways that enable the systems to work most efficiently.

Coordinated smart energy systems will reduce power consumption, improve equipment reliability, and enable power companies to achieve optimal operating results.

The smart energy system will implement remote control of evaluations at some core sites, the system will be further achieving full-domain remote control. Most field operations will continue to be performed by on-site engineers making on-the-spot decisions — an approach that guarantees slower response times for crew positioning and the risk of introducing errors that may affect system reliability.

Intelligent Energy

Announced smart energy systems based on computer-aided decisions-support are enabled by modern data analysis techniques. For power utilities, state-of-the-art information processing technologies are critical to maintaining the levels of reliability that are vital to the good health and profitability of each business and the industry as a whole.

Due to the real-time nature of electricity production and consumption, the primary challenge is maintaining the balance between supply and demand. The ongoing installation of huge numbers of renewable energy generation sites and growing diversification of consumer demand promise to bring greater fluctuations on both the supply and demand
The addition of Internet+ technologies is the final phase of the energy industry evolution as is currently understood. The goal is to actively employ Internet business models to transform the energy industry according to the following steps: evolution as is currently understood. The goal is to actively employ Internet business models to transform the energy industry according to the following steps:

- **Internet Energy**
 - Energy Internet cloud platforms will connect operators with each and every piece of equipment involved in power generation, transmission, distribution, sales, and consumption.
 - Ultimately, Energy Internet application ecosystems will form around open enterprise Energy Internet cloud platforms. Energy Internet App factories will develop software that can test for key measurements in real time, such as flow-rates, temperatures, and pressure as well as report volumes.
 - By monitoring equipment at most wellheads. When production is falling, field specialists traveling between sites to inspect, assess for cause, and coordinate repair must monitor pumps cloudy.
 - The core task of Energy Internet construction is the building of open platforms for implementing end-to-end interactions across the entire value chain. Internet business models and Software-Defined Networking (SDN) are expected to be used to link energy producers and consumers in ways that encourage end-user participation in building the Energy Internet ecosystem.
 - So, while it may not be possible for every utility to implement a user-friendly interface, intelligent hardware will enable the active control of power system con-
ICT Innovation Empowers the Smart Grid

By Marcus Torchia, Research Manager, Worldwide Smart Grid Strategies, IDC Energy Insights

I
ternet customers have a growing interest in energy conservation and alternative resources. At the same time, the power utility industry must reduce costs, streamline operations, and meet stringent regulations. Strengthening the Information and Communications Technology (ICT) infrastructure within the electric power grid is strengthening the utilities to improve upon their most rigorous operational and environmental goals with scalable networking benefits. Big Data and analytics, cloud computing, mobility, and the Internet of Things (IoT) are leading ICT into a new era. These technologies allow for Smart Grid investments in strategic programs that span reliability, security, energy efficiency, and retail services.

Huawei brings ICT platforms that deliver carrier-scale performance to the power utility industry in the areas of communication networking, security, storage flexibility, and physical durability.

Industry Drivers for Power Utilities

Globally, power utilities operate under diverse market conditions with varying levels of government regulation, economic growth, and infrastructure maturation stages. The following summary provides a shared view of the factors influencing utility technology investment:

- **Increasing asset utilization:** Generation capacity, for example, increases utilization rates by running plants longer and harder, increasing operating levels from 70 to 75 percent in the Asia region and developing countries and peaking at an 80-percent maximum output in North American, European, and other industrialized markets.
- **Optimizing grid operations:** Expanding automation to the grid’s edge with smart devices and network make optimizations possible via analytics using real-time and near-real-time grid data.
- **Improving reliability:** Investments in grid infrastructure assure more stable generation and faster recovery of distribution equipment.
- **Managing demand:** Networked smart meters and intelligent in-home controls now provide utilities with more options to shape usage patterns at home.
- **Energy savings and reduced greenhouse emissions:** State and national Green House Gas (GHG) emissions regulations continue enhancing energy conservation.

Third Platform Drives Innovative Trends

IDC predicted that the IT industry’s shift to a “Third Platform” for the next stage in innovation and growth. This new platform is founded on four technology pillars: Big Data & analytics, the cloud, mobility, and social.

- **Analytics:** Transmission operators already use powerful analytics to manage for regulatory compliance to state estimates. Additionally, utilities are looking to analytics for a return on Smart Grid investments and to refine business objectives such as range optimization and restoration, shaft and fraud detection, and predictive maintenance. In Europe and Australia, small-energy providers have turned to Big Data analytics for demand forecasts and customer segmentation for new services offerings.
- **Cloud formation:** The 2013 IDC Vertical Communications and IT Survey found that 23.7 percent of utility respondents use the private cloud and 18 percent use the public cloud. The utility industry is prepared to use cloud computing for Software-as-a-Service (SaaS) applications and, within the next 18 to 26 months, will start implementing the cloud for data storage.
- **Going mobile:** Mobile device usage continues to expand with advances in mobile technology, such as mobile broadband networks, high-resolution screens, and mobile work force management software.

Many of today’s workers use their smart devices for mobile office functions such as GPS tracking, data collection, recording inspections, and work-order completions.

Smart Grid investments: The IoT has long been expanding in the utility industry to automate generation and transmission networks. Maintaining decades-old infrastructure is not uncommon for many power utilities, but the practice presents an increasingly challenging environment to assure reliability, security, and performance. According to an IDC Energy Insights report on the Worldwide Utility Smart Grid Spending Forecast 2012-2017, total expenditures on ICT will exceed USD 42 billion annually by 2017.

Network Connects Information and Operational Technologies

A clear path in Smart Grid development follows the efforts to automate greater portions of the power grid from generation to the consumer. The Smart Grid challenges that utilities face include installing and upgrading communication networks, managing heterogeneous devices, ensuring system reliability and security, and maintaining the network infrastructure.

The centralized control and command architectures of power grid design are yielding to distributed intelligence of smart devices including line sensors, smart meters, synchrophasors, transformers, fault interrupters, power control modems, routers, all forms of networked systems, renewable generation units, and Remote Terminal Units (RTUs).
A Converged Network Interconnects Transmission grids require a high degree of coordination with transmission system operators and interconnectors to generate resources for maintaining a balanced, synchronized, and stable grid. Today, Wide Area Network (WAN) performance is more demanding than ever. Two interrelated factors drive this dynamic. First, utility-scale renewable generation, such as wind farms and massive solar arrays, are increasingly being tied to the transmission grid. Often, renewable generation occurs at remote locations, for example, offshore or mountainous terrain for wind, and the desert for solar. The intermittency nature of renewable generation causes voltage drops or spikes as wind speed and cloud cover affect generation rates, often within minutes. Second, Wide Area Situation Awareness (WASA) provides visibility to adjacent transmission grids that may cause cascading outages at neighboring utility sites. WASA gives a utility or transmission operator the ability to identify a small problem in asynchronous phasing before it causes a system-wide collapse.

The requirements for renewable generation and WASA demand sub-second response times that only a wide area, low-latency communication system can provide. Additionally, communication network solutions require implementing a utility’s migration path over a multi-year period between the standards of legacy distribution substations. Smart Grids require connectivity and advanced analytics beyond the point-to-point transport and backhaul applications. Utilities are investing in these major technical development efforts.

First, switchgear distribution automation is being deployed to maintain continuous service around faulty transmission sections due to old equipment and/or weather-related storm damage. Switchgear automation is found in 15 percent or fewer distribution utility substations and leaders in Europe and North America, and even less in the Asia-Pacific, Middle East, and Latin America region, according to recent research conducted by IDC Energy Insights.

Second, the need for cost-efficient power delivery and energy conservation leads to investments in circuit optimization. By correcting sub-optimal performance in circuits, utilities can reduce generation levels and extend equipment life using analytics such as Voltage/Var optimization.

Third, coordinating grid operations with demand-side management such as Demand Response and customer resources requires rapid adjustments to grid equipment based on advanced and cognitive real-time analytics. Success will require that utilities are able to plug any number of disparate devices into a unified field network throughout the distribution grid.

Cloud Data Centers Secure Operations

Responsible for enterprise networking in the back, IT is the critical partner leading security and data management in business operations. Implementations are being connected to the next generation of communications network infrastructure and propagated by data-driven services, enabling a smarter and more secure environment.

Smart Grids or the future will hinge on smart equipment and IoT devices.
systems. Several long-standing trends are bolstering the collaborative efforts that need IT to play a prominent role in the Smart Grid. First, smart device proliferation is creating an expansion of IP-unattackable devices attached to mission-critical networks. The new cast of devices increases the vulnerability for attacks beyond the closed-network SCADA devices and engineering domain of operations. Second, cyber security is a new frontier for malicious aggression, and utility control systems are the battlefield. IDC Energy Insights revealed in its 2012 survey that 65 percent of IT departments in the U.S. reported breaches or the entire security budget. Third, data is growing exponentially as a result of smart meters, distribution line sensors, smart transformers, and dozens of other device types. Larger data volumes require flexible storage. In the case of communication networks, utilities prefer ownership 5-to-1 over commercial carrier services. As the utility-owned fiber optic network infrastructure is costly to operate and maintain. Maintenance workload has been sharply reduced as power on the line can be verified remotely. The fiber optic network is a fixed line that is not well suited for mobile device deployment, evolving network requirements, or rapid recyclability.

Essential Guidance for Utilities
First, ensure a governance structure exists that allows IT and the lines of business to work closely together to identify major business objectives and connect all levels of the organization at the earliest stages. Second, collect the most relevant information about best practices that peer utilities, especially in developing a communication network strategy. There, identify the sources of available data and establish a realistic road-map for applying analytics. Smart Grids of the future will rely on smarter equipment and IT systems interconnected to the next generation of communications network infrastructure and propagated by data-derived services.

Case Study
Zhuhai Electric Power
Zhuhai Electric Power, officially China Southern Power Grid, is a state-owned enterprise that provides a range of flexible services, such as Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS), and Software-as-a-Service (SaaS). In addition, they can deliver end-to-end security solutions, as well as unified Operation & Maintenance (O&M) management platforms. Huawei also offers modular data centers, which let customers choose the equipment, frame, and services they want pre-installed in the data centers. The results are a quicker capacity expansion and superior customer experiences.

Solutions	&	Benefits
• Advanced management tools realized significant savings in the final time and expense costs for equipment installation and launch operations.

Challenges
Zhuhai Electric had been using optical fiber rings over medium and low-voltage carriers. As the utility undertook the expansion of its automated substations and began planning Distribution Automation (DA) feeders and low voltage line transformers, several limitations were identified, as highlighted below:
• System downtime of the fiber optic network is typically difficult to identify and repair.
• Repair costs are expensive for optical circuits that get severed or for equipment failures.
• The optical-fiber optic network infrastructure is costly to operate and maintain.
• The fiber optic network is a fixed line that is not well suited for mobile device deployment, evolving network requirements, or rapid recyclability.

Essential Guidance for Utilities
First, ensure a governance structure exists that allows IT and the lines of business to work closely together to identify major business objectives and connect all levels of the organization at the earliest stages.
The Digital Energy Platform (R)evolution

By James Zhou, Managing Director, Accenture Greater China Utilities

While many businesses are using digital initiatives to harmonize social, mobile, analytics, and cloud technologies, forward-thinking leaders are offering consumers more by enabling each initiative under a platform. The 2013 Accenture Technology Vision identified platforms (revolution) as one of five key trends fueling the next generation of breakthrough innovation and disruptive growth. Already, platform-based companies are capturing more of the digital economy’s opportunities for strong growth and profitability. According to the Massachusetts Institute of Technology, “In 2013, 14 of the top 30 global companies by market capitalization were platform-oriented companies — companies that created and now dominate arenas in which buyers, sellers, and a variety of third parties are connected in real time.”

Platforms have unleashed tremendous value and disruption in other industries. Accenture believes that when it comes to gas, electricity, and water, the industry is poised on the brink of a platform (revolution). For energy providers, the imperative is recognizing that companies in nearly every industry are already creating new digital ecosystems.

From “Me” to “We”

An enterprise moves to platform-based models, their technology capabilities are rapidly changing. Innovative companies are embracing platforms to increase their capabilities so they can solve bigger problems and better serve their customers. These innovators realize that their fortunes depend not only on their own successful efforts (“me”), but also on the success of all players in their platform-driven ecosystem (“we”).

Whether players include competitors, vendors, employees, consumers, or all of the above, digital platforms are facilitating competition as well as coordination. As one example, China’s Smart City platform approach is enabling Siemens and energy suppliers such as Schneidere Electric to take an integrated, scalable, and reusable approach to addressing complex urban transportation, building management, and energy management challenges.

Digital technologies require rapid, modular, agile, and flexible capabilities. The best digital solutions take the power of information technology and put it in the hands of the broader ecosystem, which includes management, front-line users, end customers, partners, and developers. The fundamental shift from “me” to “we” means that utilities and energy providers must leverage what is available through the broader ecosystems to address their business requirements.

Ecosystem as an Innovation Sandbox

Leading companies are opening their platforms to external companies that can innovate for them. Organizations can further expand such efforts with platforms serving as an “innovation sandbox” in which alliance partners, startups, and even consumers can safely and creatively experiment.

With digital, businesses can more easily find fresh talent to solve new and complex challenges. Consider San Francisco-based Kaggle — the largest community forum for data scientists worldwide — where participants compete to solve analytical problems. Those who offer a successful solution may be invited to consult on or invest in promising projects for one of the world’s largest companies. Businesses are not just outsourcing operations; they are now crowdsourcing problems solving and tapping into a much broader talent pool than in the past.

Teaming up with third parties can create value in a number of areas. For example, the Dutch company Eneco has partnered with Tesla Motors to offer consumers a charging service for electric vehicles. Using the consumer’s specified timeline and battery preferences, the service automatically charges the car battery when the price is low. Eneco plans to extend the platform to other car manufacturers. Another example is MiiRiffos, which lets smartphone users pool their water, electricity, and natural gas usage to more effectively manage consumption. The tool helps users monitor real-time usage and offers cash rebates to consumers who conserve energy. Such innovative solutions can benefit energy providers and consumers alike. Apple’s App Store is a prime example. The quantity and variety of Apps encourage more users to join the platform and more developers to build Apps for it.

Real-Time (Consumer) Business Models

Real-time operations are nothing new to businesses. For the consumer, however, real-time represents new territory. Digital platforms enable breakthrough consumer capabilities that include buying and selling excess energy, providing outage updates, and enabling alerts for switching providers when prices reach a certain threshold.

Energy providers have a unique opportunity to provide real-time (or near-real-time) demand-response services to consumers through a platform that leverages smart metering and other data. In Accenture’s research, Delivering the New Energy Consumer Experience, 93 percent of consumers reported they would like to learn more about personalization advice on actions, products, and services.
Case Study

Mosaic: Crowdfunding Community Solar Projects

As communities become more comfortable with online investing, Mosaic, a solar project finance company, has found success in crowdfunding community-based solar projects. Through the Mosaic platform, consumers can pledge funds and offer crowdfunding loans for solar development projects. In addition to facilitating investments, Mosaic also enables consumers to apply for solar financing at any time, on any device.

Machine-to-machine (M2M) communications could enable real-time energy exchange for energy consumers such as a homeowner whose solar panels produce more energy than required while the neighbor’s home needs power. Devices that can transact with each other based on pre-defined business rules will enable seamless, peer-to-peer information exchange and transactions in near-real time, creating an environment where real-time is the new normal.

Future Energy Platforms

Many advanced options from energy storage to renewables no longer require the traditional utility side. Consumers are able to move toward energy independence as centralized generation decreases. Online communities are emerging to help connect local consumers with renewable producers in their area, bypassing the need to use the utility. These changes represent the broader transition of the utilities industry to operations that are digitally enabled and integrated with renewables. Such operations include:

- Offerings that extend beyond traditional services; examples include remote monitoring, home energy management solutions, and smart metering.
- The ability to manage out-of-town demand and supply and optimize grid performance using location, asset, and consumer information.
- Real-time energy usage information to enable consumers to track, manage, optimize, and automate energy usage decisions.

Value-added industry platforms and digitally enabled offerings and services can span the entire industry value chain. The online solar platform, for example, has expedited traditional industries and continues to innovate, pushing its own boundaries into smartphone. The digital platform has simplified Amazon to transform how other players in the value chain interact and validate value, embed in core business capabilities into offering new revenue, and exploit value at the edge of its platform. From a consumer value perspective, Amazon is a range of platform opportunities emerging.

Data and information services — using an interoperable platform and Web portal to other providers to enable energy usage information to consumers.

Energy Vikings, an initiative of Alphacomm Energy Solutions, BV in the Netherlands, is an independent smart meter monitoring application that offers consumers direct insight into their electricity and gas consumption. Users can remotely read their smart meters to quickly see how much their past usage has cost them. They also can access day-by-day spending to help manage billing costs, access information about available utilities, and assess whether solar would be a wise investment.

Home management services — offering smart devices and automation systems to manage all aspects of the home.

When used with smart home appliances, the Smart-Home control device by Earthbased BWE offers maximum convenience and optimized energy management. The platform integrates in home management services with home security features to control door and window sensors, motion and smoke detectors, and remote shutter controls. It also syncs with lighting, heating, and other in-home smart devices that consumers want to control from their mobile phones.

and services to reduce bills, as well as early notifications when the bill may be higher than normal.

“Smart drilling” for example, uses three-dimensional seismic maps and sensors equipped with fiber-optic sensors to let oil companies know where to drill and in what direction to steer under-ground. These map and sensor operations generate massive amounts of Big Data that furthers the ability for production companies to find and tap new oil and gas reserves previously hidden from older exploration technologies. Access to this new technology requires fast data transmission, massive computing power, and an integration path for interfacing with current and future ICT systems and industry operations.

Oilfield communications can be challenging. The traditional method for remote wellhead monitoring and management — smart drilling — has been to use Very Small Aperture Terminal (VSAT) satellite links. In addition to LTE devices being much less expensive and faster to deploy than a VSAT terminal, satellite circuits introduce a half-second uplink/downlink penalty that is out of bounds for the millisecond latency standards of oilfield operations.

The future of oilfield communications is coming to a head. In the last fifteen years to facilitate critical operational processes such as:

- Real-time monitoring of drilling rigs and remote-operated subs and construction offices.
- Protection of the environment by making increased regulatory monitoring requirements and creating data archives.
- Workforce efficiency for process automation operations, involving in cost savings and the reduction or elimination of travel time, distance, and duplication of effort.

Given the growing number of oil and gas companies that are actively building out new infrastructures, it is just a matter of time until the competitive environment convinces the entire industry to adopt mobility solutions for access to critical production information anywhere, anytime.

Mobile in the Oil and Gas Industry

S
everal years ago, the oil and gas industry started various projects of a perceived ICT solution for advanced, low-cost communication infrastructure that could efficiently and automatically handle the massive amounts of data required as oilfield operations became digitized and smarter.

“Smart drilling” for example, uses three-dimensional seismic maps and sensors equipped with fiber-optic sensors to let oil companies know where to drill and in what direction to steer underground. These map and sensor operations generate massive amounts of Big Data that further the ability for production companies to find and tap new oil and gas reserves previously hidden from older exploration technologies. Access to this new technology requires fast data transmission, massive computing power, and an integration path for interfacing with current and future ICT systems and industry operations.

Solutions, BV in the Netherlands, is an independent smart meter monitoring application that offers consumers direct insight into their electricity and gas consumption. Users can remotely read their smart meters to quickly see how much their past usage has cost them. They can also access day-by-day spending to help manage billing costs, access information about available utilities, and assess whether solar would be a wise investment.

One of the leading challenges for mobile oilfield communications is coming to a head. In the last fifteen years to facilitate critical operational processes such as:

- Real-time monitoring of drilling rigs and remote-operated subs and construction offices.
- Protection of the environment by making increased regulatory monitoring requirements and creating data archives.
- Workforce efficiency for process automation operations, involving in cost savings and the reduction or elimination of travel time, distance, and duplication of effort.

Given the growing number of oil and gas companies that are actively building out new infrastructures, it is just a matter of time until the competitive environment convinces the entire industry to adopt mobility solutions for access to critical production information anywhere, anytime.

By Muhammad Aldhamen, IEEE Saudi Arabia Section Chairman

Advancements

and services to reduce bills, as well as early notifications when the bill may be higher than normal.

“Smart drilling” for example, uses three-dimensional seismic maps and sensors equipped with fiber-optic sensors to let oil companies know where to drill and in what direction to steer underground. These map and sensor operations generate massive amounts of Big Data that further the ability for production companies to find and tap new oil and gas reserves previously hidden from older exploration technologies. Access to this new technology requires fast data transmission, massive computing power, and an integration path for interfacing with current and future ICT systems and industry operations.

Oilfield communications can be challenging. The traditional method for remote wellhead monitoring and management — smart drilling — has been to use Very Small Aperture Terminal (VSAT) satellite links. In addition to LTE devices being much less expensive and faster to deploy than a VSAT terminal, satellite circuits introduce a half-second uplink/downlink penalty that is out of bounds for the millisecond latency standards of modern broadband networks. Wireless technologies that offer fiber-like capabilities are critical to oilfield operations. The future of oilfield communications is coming to a head. In the last fifteen years to facilitate critical operational processes such as:

- Real-time monitoring of drilling rigs and remote-operated subs and construction offices.
- Protection of the environment by making increased regulatory monitoring requirements and creating data archives.
- Workforce efficiency for process automation operations, involving in cost savings and the reduction or elimination of travel time, distance, and duplication of effort.

Given the growing number of oil and gas companies that are actively building out new infrastructures, it is just a matter of time until the competitive environment convinces the entire industry to adopt mobility solutions for access to critical production information anywhere, anytime.

By Muhammad Aldhamen, IEEE Saudi Arabia Section Chairman

Advancements

and services to reduce bills, as well as early notifications when the bill may be higher than normal.

“Smart drilling” for example, uses three-dimensional seismic maps and sensors equipped with fiber-optic sensors to let oil companies know where to drill and in what direction to steer underground. These map and sensor operations generate massive amounts of Big Data that further the ability for production companies to find and tap new oil and gas reserves previously hidden from older exploration technologies. Access to this new technology requires fast data transmission, massive computing power, and an integration path for interfacing with current and future ICT systems and industry operations.

Oilfield communications can be challenging. The traditional method for remote wellhead monitoring and management — smart drilling — has been to use Very Small Aperture Terminal (VSAT) satellite links. In addition to LTE devices being much less expensive and faster to deploy than a VSAT terminal, satellite circuits introduce a half-second uplink/downlink penalty that is out of bounds for the millisecond latency standards of modern broadband networks. Wireless technologies that offer fiber-like capabilities are critical to oilfield operations. The future of oilfield communications is coming to a head. In the last fifteen years to facilitate critical operational processes such as:

- Real-time monitoring of drilling rigs and remote-operated subs and construction offices.
- Protection of the environment by making increased regulatory monitoring requirements and creating data archives.
- Workforce efficiency for process automation operations, involving in cost savings and the reduction or elimination of travel time, distance, and duplication of effort.

Given the growing number of oil and gas companies that are actively building out new infrastructures, it is just a matter of time until the competitive environment convinces the entire industry to adopt mobility solutions for access to critical production information anywhere, anytime.

By Muhammad Aldhamen, IEEE Saudi Arabia Section Chairman

Advancements
Energy Internet Paradigm Raises Core Issues

By Junwei Cao, Professor of the Institute of Information Technology, Tsinghua University

Energy Internet Development Issues

The Third Industrial Revolution, defined by economist and author Jeremy Rifkin as the convergence of Internet technology and renewable energy, is impacting the electrical power industry with new production and consumption challenges. Around the world, the market share for alternative energy sources is rising at the same time that conventional fossil fuel reserves are becoming more difficult to recover economically. It is in this context that the Energy Internet model is coming into their own as a new economic and environmental paradigm.

Intermittent renewable energy, for example, accounts for more than fifty percent of power production. As a result, the crucial issues impacting the Energy Internet become effective energy exchange and efficient routing. Open interfaces that connect end-users and large-scale Internet become effective energy exchange and efficient routing. Energy routers, including hubs and switches, are compatible to the data routers that are responsible for load balancing of traffic over the Internet. In traditional electricity grids, transformer substations are crucial to electricity conversion, but are not designed to decouple power sources from end-user loads. By comparison, Energy Internet routers are designed to support open access and the free exchange of energy. Energy Internet routers facilitate distributed energy management and dispatching based on the optimal use of selected pathways between generation sources and end-users. Energy routers require the following in the new Energy Internet model:
- Power storage and switching technologies to collect and exchange energy.
- Data centers for information storage and processing.
- Large-capacity energy storage devices and power switching electronics devices are currently too expensive to be commercially practical. The measures being taken to resolve this issue include the integration of demand-side management technologies to help reduce costs, such as Combined Cooling, Heating, and Power (CCHP) systems.

Energy Internet Functionality

Inherent to the Energy Internet paradigm is the development of new techniques to accommodate fluctuations in supply and demand. Energy routers, including hubs and switches, are compatible to the data routers that are responsible for load balancing of traffic over the Internet. In traditional electricity grids, transformer substations are crucial to electricity conversion, but are not designed to decouple power sources from end-user loads. By comparison, Energy Internet routers are designed to support open access and the free exchange of energy. Energy Internet routers facilitate distributed energy management and dispatching based on the optimal use of selected pathways between generation sources and end-users. Energy routers require the following in the new Energy Internet model:
- Power storage and switching technologies to collect and exchange energy.
- Data centers for information storage and processing.
- Large-capacity energy storage devices and power switching electronics devices are currently too expensive to be commercially practical. The measures being taken to resolve this issue include the integration of demand-side management technologies to help reduce costs, such as Combined Cooling, Heating, and Power (CCHP) systems.

Grid restructuring for maximum flexibility, the Energy Internet architecture dynamically co-locates solar and wind generation facilities — as its Local Area Networks. This shared architecture establishes an open, peer-to-peer network of new techniques to accommodate fluctuations in supply and demand. Energy Internet routers require the following in the new Energy Internet model:
- Power storage and switching technologies to collect and exchange energy.
- Data centers for information storage and processing.
- Large-capacity energy storage devices and power switching electronics devices are currently too expensive to be commercially practical. The measures being taken to resolve this issue include the integration of demand-side management technologies to help reduce costs, such as Combined Cooling, Heating, and Power (CCHP) systems.

Energy Internet Management Tools

Energy management software is a necessity for exchanging and routing energy on the Energy Internet. These applications ensure the execution of the following functions:
- Dispatch operations from multiple generation sources.
- Connectivity to newly available generation sources.
- Control and management of power storage equipment.
- Control and management of generation and consumption micro-grids.
- Load balancing of energy sources from connected grids.
- Demand-side management tools.
- Personalized services.

Connectivity applications coordinate source-network-load interactions with other energy management systems and energy transactions with upper-layer business systems. Normally, energy exchanges over regional grids have been centrally managed; however, the interconnection of multiple grids, large and small, requires new management systems that are organized to operate in layers — from local control to coordination with a larger number of distributed facilities.

The Energy Internet ecosystem is designed to transform the energy industry from top to bottom, from business models to granular control of individual devices. In practice, the result is a platform for continuous innovation based on open, peer-to-peer connectivity.

Typical Energy Internet architecture featuring integrated information and energy infrastructures highlighting the connectivity between energy routers and cloud-based data centers.
ICT Insights: recently, the energy internet has become a very hot topic of discussion and debate. How do you see the energy industry evolving, and what are the opportunities? Dr. Li: today, we are living in the new digital world, where we expect more disruptive innovations across traditional industries over the next 10 years than what we have seen over the past 50 years. the energy internet is no exception, particularly in the green energy sector. Jeremy Rifkin states in his book "The Zero Marginal Cost Society" [Palgrave Macmillan, 2014; ASIN: B00JIG9AYO] that since the industrial revolution (over 50 years ago), energy consumption has increased from 2 percent to 13 percent. it is important to note that such energy efficiency actually contributed 86 percent to global economic growth. Over the next 40 years, this new revolution is expected to increase energy efficiency to about 40 percent, accelerating the potential for economic growth.

ICT Insights: what are the business models that support this change? Dr. Li: Recently, we have seen the emergence of three different business models used in forming Energy Internet solutions: the incumbent transformation model, the green-energy startup model, and the cloud-overly light-asset model.

- Incumbent transformation model: incumbents in the energy sector are traditionally monopolized, vertically integrated, highly regulated, heavily asset-driven, and highly suppressed in terms of energy generation, transmission, conversion, storage, and consumption. They will be in a constant struggle between maintaining existing IT/IX-focused model and a disruptive growth-focused model, between closed systems and openness, and between a diminishing monopoly and a new ecosystem value proposition as a part of transformation. For example, industry 4.0 activities in Europe have been largely emphasizing how to embrace such transformations from European industries’ leadership positions in manufacturing and infrastructure from the previous industrial revolution.

- Green-energy startup model: this model will likely remain a minority option in this early stage of development but has enormous potential to disrupt the existing energy industry. Green-energy opportunities extend from more traditional generation and transmission to include natural resources, technology, economics, and marketing. In the U.S., companies such as Tesla Motors continue to invest in innovative energy. Tesla recently announced plans to build a “factory for batteries” so it can produce an electric car for the mass market and possibly make batteries for city-scale solar energy storage. Collaborations and partnerships between startups and incumbent utilities are essential to driving the transition towards decarbonized Energy Internet solutions. Cloud-overly light-asset model: unless incumbents are able to embrace the transformation to disrupt, they can be disrupted by pure cloud platforms.

ICT Insights: Can a century-old, utility-based industry really change all that much? Partnering with Internet technology companies seems pretty far away from what we think of when we look at the traditional Energy industry. Dr. Li: every business will become a digital business in the new digital world. The Energy industry is already leveraging technology to increase production and transmission efficiency, lower costs through automation, and reduce carbon labor with remote meter reading, online bill processing, and hands-off infrastructure management systems.

In recent years, the ICT industry has been going through major software-defined transformation ranging from virtualization and automation across computing, storage, and network resources to highly distributed cloud service platforms and big data analytics. In contrast, most incumbent enterprise IT infrastructures in production today were built with 1990s technology, using highly fragmented and vertically integrated stacks. This heavy-weight infrastructure is incapable of supporting the upcoming cloud-based and big-data-driven digital transformation.

The essence of the Energy Internet is to digitize the heavy-asset-oriented Energy industry through software-defined light-asset capabilities empowered by the newly transformed ICT industry, leveraging the three basic business models.
Energy Internet Extra

The Energy Internet is part of Industrial IoT, which captures the new industry revolution across manufacturing, energy, agriculture, transportation, and accounting for nearly two-thirds of the global GDP.

3-Layer Industrial Internet Architecture

ICT Insights: How does the Energy Internet relate to Machine-to-Machine (M2M) and Internet of Things (IoT) trends that we hear so much about?

In 3.1: The Energy Internet is part of Industrial IoT, which captures the new industry revolution across manufacturing, energy, agriculture, transportation, and other industrial sectors of the economy, accounting for nearly two-thirds of the global GDP. In general, the Industrial IoT solution platform is virtually formed through a so-called three-layered Internet model:

• Communication Internet across various carrier, wireless, field, enterprise, and home networks.
• Industrial Internet, which digitally transforms all devices, equipment, and facilities in the physical world and hence connects them through various Internet technology architectures.
• (Digital) Logistics Internet, which encompasses the cloud data centers with advanced software analytics and data intelligence capabilities to empower new technologies and business innovations.

ICT Insights: What is Huawei doing in research and product development that fits into this vision of the future? What technology can ICT industries help the Energy industry transform as well?

About five years ago, Huawei executives made a major strategic decision to invest in the Cloud-based data center infrastructure market. Cloud technologies, along with disruptive IT business transformation, have fundamentally changed data center infrastructure requirements, including virtualized and converged servers, software-defined storage, and software-defined networks to cloud infrastructures and platforms.

At the Digital Logistics Internet layer (i.e., cloud data centers) of the ICT architecture, Huawei has been working closely with leading automotive manufacturers for telematics; governments and public safety organizations for Smart Cities; leaders in education to connect classrooms and remote schools; and dozens of other industries to create solutions to common cross-industry challenges.

Unified OS in IoT Devices (Huawei LiteOS initiative): 100 billion rapidly emerging, highly diversified IoT devices will be connected to the Internet by 2025 with a wide range of constraints including CPU, memory, power, network, life-cycle, and many others. It is critical to develop a unified OS across diversified IoT devices for functional abstraction, software programmability, connectivity, and hardware decoupling.

IoT gateway: An IoT gateway often sits in the middle between IoT devices and telecommunication networks, not only providing the necessary network connectivity, but also supporting additional intelligence functions such as event processing, protocol conversion, data aggregation, security, and Big Data-streaming. Most existing industry field solutions today are fragmented and proprietary, and the IoT gateway can serve as an overlay device to connect diversified industry field networks to industrial management and IT-based systems in a more standardized and open framework.

Notice that all the above three major Huawei developments have been addressing the fundamental first steps toward industry digital transformation, making industry-sector device solutions digitally connect to the Communication Internet and digitally interact with the Digital Logistic Internet.

Since 2011, Huawei has achieved sustained annual double digit growth in the Cloud-based data center infrastructure space. Huawei today is among the top four server product providers in the world.

Huawei has been addressing the fundamental first steps toward industry digital transformation, making industry-sector device solutions digitally connect to the Communication Internet and digitally interact with the Communication Internet and digitally interact with the Digital Logistic Internet. Since 2010, in the rapidly emerging green energy field, Huawei has focused on Photovoltaic (PV) inverters, which directly connect solar panels to local and public electric grids, and on other disruptive energy solutions. Today, Huawei is a top supplier of PV inverters in the China market in addition to having achieved rapid growth in Energy and other international markets, with a total global installed capacity of about 10 GW. Our success is largely due to the significant technology advantages that achieve high efficiency, high reliability, and low OPEX, and are driven by the need to power ever-expanding networks around the world.

PV inverters are a critical component in solar energy systems but far from forming IEE Energy Internet solutions. In one example, Huawei adopted our Cloud technologies to digitally connect all PV inverters...
ICT Insights: The Internet of Things (IoT) is also a very popular topic these days, what do you think are the future IoT technology trends, what technical changes? What is driving these changes, and what are the potential benefits for the Energy Industry?

Dr. Li: IoT solutions can be further categorized into consumer IoT and Industry IoT. Today, we have seen significant early success in the consumer IoT space, largely driven by OTT players. Their cloud-overlaid and light-asset-only model successfully decoupled user experiences, business intelligence, and service enrichment from the traditional heavy-asset sectors while creating new, and sometimes dominant, value propositions. Industry IoT is still in an early emerging stage, which requires horizontally crossing multiple industry sectors, which is traditionally very difficult.

Sensors in industrial systems have been connected and integrated for decades, especially in the Energy industry (remote oil platforms, power meters, energy distribution networks), but have thus far lacked the openness, programmability, and agility that is predicted with the Energy Internet. Connecting things to the Energy industry will continue and accelerate, driving the real challenges around the data and context, and in realizing the value of the data and identifying new initiatives driven by that data. Without large traditional industry enterprise participation and collaboration, pure OTT players must meet great challenges to be successful in the Industrial Internet. The data and operations of the Energy industry are locked within incumbent Energy industry systems. There is not a strong culture of openness and cross-industry ecosystems today, limiting the potential collaboration and innovation options available. So the first prediction is that openness and cooperation to share data currently entwined in Energy systems will become routine.

The second prediction is that dispersion will occur. The Energy industry has been traditionally divided into multiple sectors from generation and transmission, storage, and consumption. Like most Industrial Internet solutions, the Energy Internet solution needs to have an IoT platform across all the three Internet layers from cloud DC to network edge and then to on-premise industry devices, across multiple industry sectors. Today, the major challenge in building such an Industry IoT platform is where and how to build its distributed intelligence, especially at the distributed network edge. In other words, a substantial amount of IoT platforms functions such as session connectivity,environment discovery, data aggregation, data streaming, discovery, and security will push to distributed network edge, closer to the consumers of energy, and closer to on-premise machines and devices.

ICT Insights: The IT industry talks about “Cloud” as a consolidation and centralization effort, but you are predicting that processing will spread beyond the cloud? Doesn’t this conflict with the IT trend?

Dr. Li: There are three different models about where such distributed network edges are defined to support IoT intelligence: edge, on-premise, and native.

The overlay model assumes that distributed network edges are located in different data centers (e.g., on-premise or central hybrid clouds). Such a model has certain limitations on on-premise data centers: they are typically owned by one enterprise to cover one specific sector, hence all the cross-sector M2M connectivity (which can be very substantial) has to be carried out in the central cloud DC and ICC interconnected to that network. The overlay model is simply to integrate such IoT edge middleware intelligence into the on-premise network DCs. From a telecom provider’s point of view, such distributed network edges occur at their external access networks, such as industry field networks, Wi-Fi access, enterprise networks, and home networks. Obviously such networks only cover local on-premise connectivity and hence are fundamentally limited to specific local devices and data, and only in their specific sectors.

The second model is called the native model. From the telecom network operator perspective. Distributed network edge intelligence can be integrated into the telecom network infrastructure, where edges can be dynamically distributed either as access, metro, or core networks depending on requirements and demand. Being based in the distribution of the network, this model allows a single site, location, or region to be aggregated into a logical processing hub. Logically, an oil field, a power generation plant, and a neighborhood served by a power substation are all examples of geographically related and energy sector aligned telemetry, which is most meaningful in the local context. This model has unique advantages to provide intelligence nearby to the objects and resources that are being monitored and managed.

In the long run, all three business models will co-exist. Huawei is currently developing its IoT platform with emphasis on building IoT edge middleware intelligence uni- formly in support of all three business models. This solution strategy is different from pure OTT players by enabling our partnership with major industry players and building a common foundation ecosystem.

Energy Internet Revolution

ICT Insights: The traditional telecommunications industry was also very shrewd and vertically aligned 20 years ago, like the Energy industry today, until it was first hit by Internet expansion. Huawei has already experienced this Internet transition and fast-paced evolution, and has accumulated a variety of skills and experience. Does this experience help the Energy industry transform and evolve to the Energy Internet?

Dr. Li: There is a great analogy between what has happened in the telecom industry over the last 10 to 20 years and what is happening now in the energy industry. Both are monolithic and highly regulated industries. Telecom has successfully made three network infrastructure transformations: from voice-centric to data-centric, from TDM-based to IP-based, and from fixed-oriented to mobile-oriented, forming the basis of the content-driven Communication Internet today. Especially over the last 10 years, we have been ob-
and traditional inward-focused and process-driven corporate cultures.

In reality, what is holding us back are not technologies, but the legacy kilo vertical and fragmented organizations and rate cultures. This is true of both the telecommunications industry and of various energy industry itself.

In the Industrial Internet, digital transformation implies very much the same as Software-Defined-X. That is, through the abstraction and programmability of heavy-asset industry devices one can then leverage the light-asset nature of software across the three Internet layers to accelerate the E2E digital transformation. Such an optimization of combination of heavy-asset infrastructure and light-asset software will fundamentally change the traditional operation and business models to allow energy industry enterprises to become more lean, agile, efficient, and super-scalable vertically and horizontally. In fact, the current new wave of telecom industry transformation shares much more in common with the upcoming industry IoT transformation.

ICT Insights: For the Energy Internet to succeed, what are Huawei's biggest challenges and difficulties?

Dr. Li: Huawei is a world leading ICT infrastructure solution provider, especially in forming the next-generation Communication Internet and building new cloud-based data center infrastructure for the Digital Logistic Internet. Our Communication Internet products and solutions have been expanded from telecom networks to networks at enterprise, industry, and home premises. The new digital world is based on shared and leveraged economies and collaborative commons. In recent years, Huawei has been recognized as a major technical contributor in many emerging open source communities, a cornerstone of partnership, integration, and collaboration. We see Huawei as an excellent partner contributing value to the new ecosystems, but these ecosystems will need to be driven by the energy industry itself.

In recent years, the Telecom industry has initiated a new wave of transformation across network infrastructures, data centers, operations, business-enabling platforms, empowered by rapidly emerging SDN, NFV, cloud, Big Data, and distributed system technologies. Huawei's overall strategy towards this transformation is called SoftCOM, basically embracing Software-Defined-X where X stands for network infrastructures, data center, operation and business transformation enabling. Software is commonly referred to as a light asset once it is decoupled from any hardware-based heavy asset, hence significantly cost advantages in terms of distribution, integration, operation and business management, service agility, and collaboration.

In the Industrial Internet, digital transformation implies very much the same as Software-Defined-X. That is, through the abstraction and programmability of heavy-asset industry devices one can then leverage the light-asset nature of software across the three Internet layers to accelerate the E2E digital transformation. Such an optimization of combination of heavy-asset infrastructure and light-asset software will fundamentally change the traditional operation and business models to allow energy industry enterprises to become more lean, agile, efficient, and super-scalable vertically and horizontally. In fact, the current new wave of telecom industry transformation shares much more in common with the upcoming industry IoT transformation. Our direct experiences and rich knowledge gained from the Communication Internet to efficiently cope with such content dynamics, but they have not actively participated in the content ecosystems until very recently.

ICT Insights: For the Energy Internet to succeed, what are Huawei's key strategic partnerships and alliances?

Dr. Li: As a world leading ICT infrastructure solution provider, especially in forming the next-generation Communication Internet and building new cloud-based data center infrastructure for the Digital Logistic Internet, Our Communication Internet products and solutions have been expanded from telecom networks to networks at enterprise, industry, and home premises. The new digital world is based on shared and leveraged economies and collaborative commons. In recent years, Huawei has been recognized as a major technical contributor in many emerging open source communities, a cornerstone of partnership, integration, and collaboration. We see Huawei as an excellent partner contributing value to the new ecosystems, but these ecosystems will need to be driven by the energy industry itself.

In recent years, the Telecom industry has initiated a new wave of transformation across network infrastructures, data centers, operations, business-enabling platforms, empowered by rapidly emerging SDN, NFV, cloud, Big Data, and distributed system technologies. Huawei's overall strategy towards this transformation is called SoftCOM, basically embracing Software-Defined-X where X stands for network infrastructures, data center, operation and business transformation enabling. Software is commonly referred to as a light asset once it is decoupled from any hardware-based heavy asset, hence significantly cost advantages in terms of distribution, integration, operation and business management, service agility, and collaboration. In the Industrial Internet, digital transformation implies very much the same as Software-Defined-X. That is, through the abstraction and programmability of heavy-asset industry devices one can then leverage the light-asset nature of software across the three Internet layers to accelerate the E2E digital transformation. Such an optimization of combination of heavy-asset infrastructure and light-asset software will fundamentally change the traditional operation and business models to allow energy industry enterprises to become more lean, agile, efficient, and super-scalable vertically and horizontally. In fact, the current new wave of telecom industry transformation shares much more in common with the upcoming industry IoT transformation. Our direct experiences and rich knowledge gained from the Communication Internet to efficiently cope with such content dynamics, but they have not actively participated in the content ecosystems until very recently.

ICT Insights: What is Huawei's position on the Energy Internet?

Dr. Li: Huawei is a world leading ICT infrastructure solution provider, especially in forming the next-generation Communication Internet and building new cloud-based data center infrastructure for the Digital Logistic Internet. Our Communication Internet products and solutions have been expanded from telecom networks to networks at enterprise, industry, and home premises. The new digital world is based on shared and leveraged economies and collaborative commons. In recent years, Huawei has been recognized as a major technical contributor in many emerging open source communities, a cornerstone of partnership, integration, and collaboration. We see Huawei as an excellent partner contributing value to the new ecosystems, but these ecosystems will need to be driven by the energy industry itself.

In recent years, the Telecom industry has initiated a new wave of transformation across network infrastructures, data centers, operations, business-enabling platforms, empowered by rapidly emerging SDN, NFV, cloud, Big Data, and distributed system technologies. Huawei's overall strategy towards this transformation is called SoftCOM, basically embracing Software-Defined-X where X stands for network infrastructures, data center, operation and business transformation enabling. Software is commonly referred to as a light asset once it is decoupled from any hardware-based heavy asset, hence significantly cost advantages in terms of distribution, integration, operation and business management, service agility, and collaboration. In the Industrial Internet, digital transformation implies very much the same as Software-Defined-X. That is, through the abstraction and programmability of heavy-asset industry devices one can then leverage the light-asset nature of software across the three Internet layers to accelerate the E2E digital transformation. Such an optimization of combination of heavy-asset infrastructure and light-asset software will fundamentally change the traditional operation and business models to allow energy industry enterprises to become more lean, agile, efficient, and super-scalable vertically and horizontally. In fact, the current new wave of telecom industry transformation shares much more in common with the upcoming industry IoT transformation. Our direct experiences and rich knowledge gained from the Communication Internet to efficiently cope with such content dynamics, but they have not actively participated in the content ecosystems until very recently.

ICT Insights: For the Energy Internet to succeed, what are Huawei's biggest challenges and difficulties?

Dr. Li: In reality, what is holding us back are not technologies, but the legacy kilo vertical and fragmented organizations and rate cultures. This is true of both the telecommunications industry and of various energy industry itself. Toward the rapidly emerging IoT solutions, Huawei has been de- veloping a new cloud-based IoT platform with emphasis on IoT edge intelligence and the distributed network edge to truly enable horizontally and scalable IoT solutions across various industry sectors and on-premise local network silos. For the on-premise Industrial Internet, our main focus has been on providing key components such as common communication modules and IoT gateways. Huawei is promoting a vetted and scalable open source OS software framework for the industry adoption across various IoT devices through our LiteOS project initiative. To support and accelerate IoT industry alliances, Huawei has established strategic partnerships with key leading technology companies in Europe across various industry sectors, such as SAP, Accenture, ABB, Audi, NXP, STM, and Fraunhofer. In China, Huawei has established strategic partner- nerships with key players of different industry sectors to empower the government-led "Internet" transformation.

The Energy Internet is an important segment of overall Industrial Internet solutions. We look for Huawei to empower E2E Energy Internet solutions through partnership and open ecosystem foundations. Achieving E2E Energy Internet solutions will require ICT infrastruc- ture and IoT platforms in place across all three Internet layers to truly empower the collaboration and partnership among the three business models (i.e., incumbent transformation, green energy startups, and cloud-evergreen light assets). Huawei has been well positioned to drive these transformations and partnerships from business, solution, and technology perspectives.

In reality, what is holding us back are not technologies, but the legacy kilo vertical and fragmented organizations and rate cultures. This is true of both the telecommunications industry and of the legacy silo systems in place and their associated vertical and fragmented organizations and traditional inward-focused and process-driven corporate cultures.

In the Industrial Internet, digital transformation implies very much the same as Software-Defined-X. That is, through the abstraction and programmability of heavy-asset industry devices one can then leverage the light-asset nature of software across the three Internet layers to accelerate the E2E digital transformation. Such an optimization of combination of heavy-asset infrastructure and light-asset software will fundamentally change the traditional operation and business models to allow energy industry enterprises to become more lean, agile, efficient, and super-scalable vertically and horizontally. In fact, the current new wave of telecom industry transformation shares much more in common with the upcoming industry IoT transformation. Our direct experiences and rich knowledge gained from the Communication Internet to efficiently cope with such content dynamics, but they have not actively participated in the content ecosystems until very recently.

ICT Insights: What is Huawei's position on the Energy Internet?

Dr. Li: Huawei is a world leading ICT infrastructure solution provider, especially in forming the next-generation Communication Internet and building new cloud-based data center infrastructure for the Digital Logistic Internet. Our Communication Internet products and solutions have been expanded from telecom networks to networks at enterprise, industry, and home premises. The new digital world is based on shared and leveraged economies and collaborative commons. In recent years, Huawei has been recognized as a major technical contributor in many emerging open source communities, a cornerstone of partnership, integration, and collaboration. We see Huawei as an excellent partner contributing value to the new ecosystems, but these ecosystems will need to be driven by the energy industry itself.

In recent years, the Telecom industry has initiated a new wave of transformation across network infrastructures, data centers, operations, business-enabling platforms, empowered by rapidly emerging SDN, NFV, cloud, Big Data, and distributed system technologies. Huawei's overall strategy towards this transformation is called SoftCOM, basically embracing Software-Defined-X where X stands for network infrastructures, data center, operation and business transformation enabling. Software is commonly referred to as a light asset once it is decoupled from any hardware-based heavy asset, hence significantly cost advantages in terms of distribution, integration, operation and business management, service agility, and collaboration. In the Industrial Internet, digital transformation implies very much the same as Software-Defined-X. That is, through the abstraction and programmability of heavy-asset industry devices one can then leverage the light-asset nature of software across the three Internet layers to accelerate the E2E digital transformation. Such an optimization of combination of heavy-asset infrastructure and light-asset software will fundamentally change the traditional operation and business models to allow energy industry enterprises to become more lean, agile, efficient, and super-scalable vertically and horizontally. In fact, the current new wave of telecom industry transformation shares much more in common with the upcoming industry IoT transformation. Our direct experiences and rich knowledge gained from the Communication Internet to efficiently cope with such content dynamics, but they have not actively participated in the content ecosystems until very recently.

ICT Insights: For the Energy Internet to succeed, what are Huawei's biggest challenges and difficulties?

Dr. Li: In reality, what is holding us back are not technologies, but the legacy kilo vertical and fragmented organizations and traditional inward-focused and process-driven corporate cultures. This is true of both the telecommunications industry and of the legacy silo systems in place and their associated vertical and fragmented organizations and traditional inward-focused and process-driven corporate cultures.
In February 2015, Zhenya Liu, President of the State Grid Corporation of China (SGCC), published his latest book, *Global Energy Internet*. This book has prompted renewed interest in the Energy Internet among industry insiders. According to Zhenya Liu, the world has experienced a process in which the primary energy sources have evolved from firewood to fossil fuels, such as coal, oil, and natural gas. However, it is all too clear that an excessive reliance on fossil fuels is unsustainable and largely responsible for accelerated resource depletion, increasing costs, toxic environment pollution, and life-threatening climate change.

Fully Connected Power Grids

The connected energy concept proposed by Zhenya Liu argues that Information and Communications Technology (ICT) is a fundamental prerequisite for realizing the Energy Internet. According to Essence Securities, a leading Chinese financial services company, the market value of Energy Internet in China exceeds USD 786 billion, and will create numerous business opportunities for the distribution and marketing of electricity by using micro grids to trade energy products, value-added services, equipment, and e-commerce solutions. The priority is to build Energy Internet platforms that include industry and building demand-management, intelligent wind farms, Photovoltaic (PV) solar power plants, and electric vehicle charging piles and stations.

The United States (US) and Germany have made significant progress in Energy Internet construction compared with China. In the US, General Electric (GE) has built an Internet of Things (IoT) that connects power generation, transportation, distribution, and consumption, all of which facilitate trading in the financial markets based on the value of the electricity industry vendors. GE’s revenue from value-added energy management services is USD 7 Billion. In Germany, more than 1,100 companies are engaged in electricity sales, and various startup companies are providing services in solar generation, power storage, and electric vehicle support.

Huawei believes that Energy Internet has the following characteristics when compared to traditional energy systems:

- Connection of diverse, new, and distributed energy sources to existing grids.
- Use of elastic grids to support real-time, bi-directional demand-side interactions.
- Establishing open energy trading platforms.
- Massive numbers of intelligent, connected terminals.
- Generation and use of Big Data-derived information.

At the 2014 Huawei Electric Power Industry Summit in Brisbane, Australia, Huawei and IDC jointly released a white paper entitled *Innovative ICT Empowers a Better Connected Smart Grid* in which Huawei first proposed the concept of a fully connected grid. At the summit, Christopher Holmes, Managing Director of IDC Insights Asia Pacific, emphasized the role of ICT as the bridge to link power grids and intelligent automation for enabling interaction between grids, power utilities, and consumers. In other words, to connect everything that can benefit from connectivity.

ICT Boosts the Energy Internet Era

By Youshi Xu, General Manager, Electric Power Solutions Department, Huawei Enterprise Business Group

Large-scale electricity networks become modernized with the addition of ICT connectivity and information services. >>
Huawei’s definition of a fully connected grid includes: unified collaborative computing throughout the comprehensive sharing of grid data; agile communication networks; and intelligent dispatch and control.

Grid Data Sharing

Sharing grid data is functionally distributed resources to be integrated using cloud computing and Big Data platforms. This integration achieves the following:

- Efficient, commutated computing.
- In-depth data mining.
- Policy-driven business intelligence.
- Decision-support automation.
- Production control management and autonomous dispatch.

Large-scale electricity generation and transmission systems are generating vast amounts of data that pose a serious challenge to system operators in the areas of relevant analytics — a needle in the haystack problem — and the extraction of relevant information for managing significant, potential business growth. For example, the US started a nationwide installation of Phasor Measurement Units (PMUs) in 2009. Because PMU measurements (voltage, current, GPS location, and others) are taken up to thirty times per second from multiple nodes, data payloads easily aggregate into the terabyte (TB) range. In China, several hundred million smart electric meters collect data once every 15 minutes, resulting in terabytes of information every day from only this source. The data, which encompasses amounts of information that are not always fully utilized. Using data mining and analytics, large utilities in the US and Europe have begun to build generation and consumption models based on the unannotated data collected from smart electric meters with weather data and building information. The benefit is that suppliers can authorize high-value users access to their consumption data, and thereby help them to finely tune the management of their energy demands.

The Huawei SD-DC distributed cloud data center architecture is designed to improve the management and operating efficiency of both new and traditional services. The core functionality of the SD-DC equipped data centers is on-demand consumption of available resources to match real-time service demands. The SD-DC architecture enables customers to implement flexible data sharing and enhanced scalability, which, in turn, permits the experimentation of business models (currency versus pricing versus margin versus ROI). Worldwide, Huawei has deployed more than 100 cloud data centers, including systems deployed to global energy giants that include the State Grid Corporation of China (SGCC), China Southern Power Grid (CSG), China National Petroleum Corporation (CNPC), and Saudi Electricity Company (SEC).

To date, Huawei has deployed over five hundred Big Data projects, and more than two hundred partners have chosen Huawei’s FusionInsight platform to develop their vertical solutions. Huawei is the fourth largest continuous source-code contributor to the Apache Hadoop and Apache Spark communities. To date, Huawei has contributed over 2,700,000 lines of code to the Hadoop and Spark projects.

Agile Communication Networks

Agile communication networks require rapid, secure, and large-capacity backbone networks to implant high-speed, bidirectional exchange channels.

In the power systems market, data is carried over both high-voltage copper and fiber-optic circuits — sometimes strung over the same transmission towers, sometimes routed independently. The electric power network is also a highly reliable broadband data channel. Broadband networks connect massive data collections with Big Data applications at cloud data centers. Because electric power systems are a component of our primary infrastructures, the associated backbone communications network is carrying increased service data traffic flows over multiple circuits that, in total, demand real-time responses to standard deviations.

Upgraded systems must anticipate continuing data growth for years ahead. Thailand, for example, is experiencing exploding demand for data and video services, and requires that the backbone data centers over their new 6 Tbps pilot WDM network be over 10 Gbps.

Huawei means or exceeds the standards for fault-tolerant backbone communications between long-haul, high-capacity substations by enabling single networks to carry multiple types of electric power services. Embedded Phase Change Memories (PCM) — non-volatile memories that are 500 to 1,000 times faster than Flash — are the physical devices used at the substation level upon which many such all-in-one communication services are facilitated.

Backbone networks are defined by high capacity and reliability. The baseline reference for utility-scale power systems are continued, redundant operations of backbone networks between substations under stress. For instance, in 2008, China’s southern provinces were heavily damaged by a severe ice storm. The pylons supporting the transmission towers for China Southern Power’s (CSP) 500 kV electricity and optical fiber line collapsed and circuits were severed. Because of CSP having installed a redundant optical Synchronous Digital Hierarchy (SDH) ring-network, dispatch communications never failed and a widespread power failure was averted.

Huawei’s OptiX-series Wave-Division Multiplexing/Optical Transport Network (WDM/OTN) equipment cross-connects 8 Terabit throughput per the unstructured data collected from smart electric meters with weather data

Huawei’s SD-DC distributed cloud data center architecture is designed to improve the management and operating efficiency of both new and traditional services. The core functionality of the SD-DC equipped data centers is on-demand consumption of available resources to match real-time service demands. The SD-DC architecture enables customers to implement flexible data sharing and enhanced scalability, which, in turn, permits the experimentation of business models (currency versus pricing versus margin versus ROI). Worldwide, Huawei has deployed more than 100 cloud data centers, including systems deployed to global energy giants that include the State Grid Corporation of China (SGCC), China Southern Power Grid (CSG), China National Petroleum Corporation (CNPC), and Saudi Electricity Company (SEC).

Beginning with Guodian Nanjing Automation Co., Ltd. to carry out joint development for the power distribution field. The two companies succeeded in migrating power distribution services from traditional Supervisory Control and Data Acquisition (SCADA) master stations to the Huawei cloud platform. SCADA services are a fixture of traditional data centers, and high requirements for mid-term performance and reliability. Testing results proved that the solution fully meets the actual needs of power utilities. This solution has three core values. First, the hardware resources utilization of power distribution master stations is improved. Second, the capacity of master stations can be flexibly expanded to keep up with the rapid growth of power distribution networks. Third, the traditional 1+1 backup mode is upgraded to 1+N, which enhances the security of master stations. Huawei believes that, in the near future, these next-generation cloud technologies will be applied in key production activities of the energy industry.
optical fiber. Ample bandwidth affords electric power companies the oppor-
tunity to expand their services by leasing spare bandwidth for new revenue
flows. As the global electric power industry accepts and adopts that “informa-
tization” is, by definition, the new norm, many more types of service flows will flood the
electric power industry to transmit data over existing copper circuits because
electric power lines provide a 2 Mbits/s communication path is an aggregation of Big Data point sources that make monitoring and
diagnosis, and autonetworking — and can be widely applied to intelligent
gateways and networks. The completed signal path is an aggregation of Big Data point sources that make monitoring and
remote control possible.
Ease-of-installation for massive numbers of intelligent terminals — both physically and the software configuration for local functionality and system
connectivity — is a world-class challenge.
Power-Line Communication (PLC) technology is widely used in the electric power industry to transmit data over existing power distribution systems because
easy to implement without having to pull new cable. Traditional PLC technology is limited by transmission rates and poor communication
reliability. At a communication rate exceeding 2 Mbits/s, Huawei’s HiSilicon
Hi-PLC chip is more than twenty times faster than any previous generation of PLC equipment. Based on adaptive frequency band selection, the Hi-PLC chip is compliant with the IEEE1901 standard for transmitting broadband
data over power lines. In addition to actively suppressing noise, the Hi-PLC is able to dynamically select the optimal frequency band for transmitting
data over high-voltage electric power lines. Throughput and reliability are greatly improved. Hi-PLC-equipped smart meters, tested in Huawei’s Ad-
vanced Metering Infrastructure (AMI) project — an IPv6 environment — achieved a hundred percent meter reading success rate.
Long-Term Evolution-M2M (LTE-M) is the latest generation of 4.5G technology. A narrow-band LTE derivative oriented to IoT, LTE-M provides up to one hundred times the coverage area and more than one thousand times the
connection capacity, or one-month the power consumption. Requiring only 200 kHz of allocated spectrum and reusing existing network resources,
LTE-M addresses the practical problems of energy enterprises such as wide
distribution areas and large numbers of low-cost intelligent terminals. A 2015 LTE-M pilot project with China Unicom Network Technology Re-
search Institute successfully tested smart parking services in Shanghai.
Huawei provides an open, unified IoT Operating System (IoS) that enables its partners to drive industry standardization. Officially released at the
Huawei Network Congress in May 2015, at 10 KB, LiteOS is the most lightweight IoT OS available. LiteOS supports zero configuration, auto-
discovery, and autonetworking — and can be widely applied to intelligent
terminals and sensors in terminal and home industry. Like the Android OS for mobile
smart phones, LiteOS is open to all developers to simplify and accelerate
smart hardware development.
The Future of Energy Internet
The ultimate goal of Energy Internet is to integrate global energy solutions with the capability to deliver a broad range of services. For electric power
generation, Energy Internet can produce valuable Big Data results based on
energy and consumption in nine ways:
• Collect the run-
ing data of every
component in an
electric power system to monitor
disruptions and repair timely
behavior.
• Collector the real-
time status of
every component in an electric
power system to monitor
disruptions and repair timely
behavior.
• Collector the run-
ing data of every
component in an electric power system to monitor
disruptions and repair timely
behavior.

Huawei has come to realize that a fully connected grid lays the founda-
tion for Energy Internet. With optimizations in areas such as Big Data, cloud computing, agile networks, and intelligent chips, ICT technologies are posi-
tioned to continue generating unexpected benefits for the
Enabling Interactive Electrical Grids

By Haoxiang Zhang, Senior Marketing Manager, Huawei IoT Gateway Product Family

The Advanced Metering Infrastructure (AMI) is a network processing system that measures, stores, analyzes, and applies consumer electricity consumption information. The AMI system includes the following:

- Smart electrical meters at user premises.
- Data management systems at power utilities.
- Communications for network interconnection.

AMI implementations provide a technical support platform for comprehensive, two-way interaction between users and the power grid by adding a digital communications return path for consumer data. Sensor networks capture measurements at circuit and device levels for efficiency and use-a digital communications return path for consumer data. Sensor networks capture measurements at circuit and device levels for efficiency and use-a digital communications return path for consumer data.

High-speed, grid-signaling data transmitted over electrical power lines are subject to interference, attenuation, and loss. Typical problems include:

- Distribution transformers block power-line carriers.
- High data rates induce carrier-signal attenuation.
- Background noise degrades signal transmission.

The Advanced Metering Infrastructure (AMI) is a network processing system. Huawei’s power-line solution significantly improves communication in the Advanced Metering Infrastructure processing system.

Significant Improvements to AMI

In Europe, the PowerLine Intelligent Metering Evolution (PRIME) and G3 Alliance have adopted a new generation of anti-interference multi-carrier PLC technologies based on Orthogonal Frequency Division Multiplexing (OFDM) that are now deployed on local and regional power grids. Huawei first launched a patented, wideband OFDM communications circuit that integrates PLC modules with external ICT routing, switching, and security technologies. Huawei analyzed large amounts of data from grid operators on the interference characteristics of data transport over power-line channels. The result is an anti-interference, anti-noise solution that optimizes signal transmission frequencies automatically for delivering fast, secure communications over power-line carriers.

The Huawei wide-band PLC Solution provides a technical support platform for comprehensive, two-way interaction between users and the power grid by adding a digital communications return path for consumer data. Sensor networks capture measurements at circuit and device levels for efficiency and use-a digital communications return path for consumer data.

Power Line Interference

Intelligent meter reading systems include the older Automatic Meter Reading (AMR) technology and the newer, two-way capable AMI systems. AMI supports real-time monitoring, remote-controlled switching, and dynamic pricing.

The AMI network platform includes the use of Power-Line Communication (PLC) and Radio Frequency (RF) for communications. Despite significant noise interference problems that complicate network data integrity, two-way PLC technologies are deployed in 60 to 70 percent of the installed base using the existing last-mile copper distribution to minimize cost.

Unstructured conventional transmission media, copper power lines were never designed to transmit digital data. High-speed, grid-signaling data transmitted over electrical power lines is subject to interference, attenuation, and loss. Typical problems include:

- Distortion transforms block power-line carriers.
- High data rates induce carrier-signal attenuation.
- Background noise degrades signal transmission.

The Huawei PLC Solution significantly improves AMI communication quality.

- OFDM: Strong anti-interference characteristics and high spectrum utilization make OFDM one of three key LTE technologies. OFDM is a parallel transmission and multi-carrier modulation method that encodes digital data on multiple carrier frequencies and will be a primary modulation method for the coming 5G era.

Frequency band self-adaptation: In grid communication, noise distribution varies based on changing attenuation, noise, and load conditions over time. Typically, the frequency for noise registers below 1 MHz and will intermittently reach 2.5 MHz. Low-frequency noise reduces power amplifier efficiency by causing signals to lose energy, while high-frequency noise attenuates signals as transmission distances increase.

Huawei determined that power-line frequencies must be kept between 2 MHz and 12 MHz and coded a self-adaptation algorithm to dynamically select the ideal pass band for error-free throughput.

Anti-noise technology: The Huawei wideband PLC Solution provides pulse noise detection and a clearance algorithm for time domain narrowband noise detection in the frequency domain. The solution uses multi-phase switch policies to contain the multi-phase noise produced by concentrators at the transformer stage.

- Two key components enable the integration of Huawei’s intelligent PLC technology into larger ICT architectures:
 - Huawei LiteOS: A lightweight operating system designed for terminal devices on the Internet of Things (IoT). LiteOS uses plug-and-play communication modules that enable grid operators to dynamically update last-mile network communication environments based on local characteristics.
 - Huawei AR Series gateway: Deployed between the public network and internal meter reading networks, the AR Series handles several upstream and downstream communication methods. Integrated firewalls and Virtual Private Network (VPN) functionality ensure channel and data security.

The Huawei PLC Solution results from combining products, technologies, and capabilities to deliver a significant improvement in data communications transport quality in the AMI network processing system.
Preparing Smart Grids for IP/MPLS Networks

By Yuquan Zou, Network Architect, Huawei Fixed Network Product Line

The morning of March 20, 2015, the Northern Hemisphere experienced a total solar eclipse. To astronomy fans, the eclipse was exciting; however, due to the quality of their grid management protocols, for the operators of Photovoltaic (PV) power grids, the temporary loss of direct sunshine was just another day at the office.

By the end of 2014, Germany had installed on the order of 1.5 million PV systems with a capacity of 38.5 GW, leading Europe and the world with 26 percent of all the PV capacity on earth and producing more than 30 percent of the nation’s renewable electricity. During the sunniest hours of the year, Germany’s PV systems provide up to 50 percent of the country’s supply of electricity.

Prior to the 2015 solar eclipse, experts had predicted that a solar concealment event would result in “nothing interesting” for the European power grid. Per expectations, German PV systems managed to handle the steep ramp-down that began at 9:28 am. As the eclipse progressed, the electricity output of the German PV system plummeted by 1.2 GW — an effect equivalent to taking 10 nuclear power plants off-line simultaneously.

With the reappearance of full sun at noon, the PV systems had restored 1.9 GW of electrical power to the grid, the equivalent of nearly 20 nuclear power plants. In the end, this wide fluctuation of solar power posed no serious threat to power supply stability.
China National Petroleum Corporation Transitions to IPv6

By Yang Liu, Key Enterprise Market & Solutions Sales Department, Huawei Enterprise Business Group

China National Petroleum Corporation (CNPC) is China’s largest oil and gas producer, a major international oilfield services provider, and an engineering construction contractor. With operations in nearly 70 countries, CNPC is active in exploration, refining, storage, transportation, engineering services, and trading. The two major challenges facing CNPC, oil and gas enterprises in general, are that crude oil and natural gas are becoming increasingly scarce, and that market competition is intensifying.

Worldwide, the oil and gas industry is growing increasingly automated. The system-wide addition of networked sensors at every measurement and control point has brought the entire industry to the threshold of creating a ubiquitous Internet of Things (IoT) for oil and gas production and distribution. It is within this context that CNPC chose to enhance their competitiveness by upgrading their digitized production automation platform to a fully intelligent solution.

Limits of IPv4

IoT-enabled oilfields rely on intelligent infrastructures built on the integration of information and communications components. For legacy plants, like CNPC that have developed their digital automation capabilities step-by-step, one of the primary technical issues standing in the way of a fully realized IoT environment are the communication networks based on the IPv4 address protocol. Because the inventory of available IPv4 addresses has been exhausted, the requirements for a complete IoT solution are impossible to meet using this old protocol.

In the production areas where IPv4 has seen continued use, address-block allocations are often discontinuous, which force artificially higher Operations and Management (O&M) costs. In addition, shared physical connections between production networks and office networks have a negative impact on service quality and security.

For all practical purposes, IPv6 breaks the limitations of overextended IPv4 networks by having an unlimited number of IP addresses. IPv6 is highly efficient and flexible. It has an unlimited number of IP addresses. IPv6 is highly scalable. It features a 128-bit address space, allowing for the future growth of the internet. IPv6 is more secure. It provides enhanced security mechanisms to protect data integrity and confidentiality. IPv6 is more efficient. It reduces the need for network address translation (NAT) by providing a global address space. IPv6 is more reliable. It supports Quality of Service (QoS) to ensure that time-sensitive traffic gets priority.

Transitions to IPv6

In the production areas where IPv4 has seen continued use, address-block allocations are often discontinuous, which force artificially higher Operations and Management (O&M) costs. In addition, shared physical connections between production networks and office networks have a negative impact on service quality and security.

For all practical purposes, IPv6 breaks the limitations of overextended IPv4 networks by having an unlimited number of IP addresses. IPv6 is highly efficient and flexible. It has an unlimited number of IP addresses. IPv6 is highly scalable. It features a 128-bit address space, allowing for the future growth of the internet. IPv6 is more secure. It provides enhanced security mechanisms to protect data integrity and confidentiality. IPv6 is more efficient. It reduces the need for network address translation (NAT) by providing a global address space. IPv6 is more reliable. It supports Quality of Service (QoS) to ensure that time-sensitive traffic gets priority.

By Yang Liu, Key Enterprise Market & Solutions Sales Department, Huawei Enterprise Business Group

China National Petroleum Corporation (CNPC) is China’s largest oil and gas producer, a major international oilfield services provider, and an engineering construction contractor. With operations in nearly 70 countries, CNPC is active in exploration, refining, storage, transportation, engineering services, and trading. The two major challenges facing CNPC, oil and gas enterprises in general, are that crude oil and natural gas are becoming increasingly scarce, and that market competition is intensifying.

Worldwide, the oil and gas industry is growing increasingly automated. The system-wide addition of networked sensors at every measurement and control point has brought the entire industry to the threshold of creating a ubiquitous Internet of Things (IoT) for oil and gas production and distribution. It is within this context that CNPC chose to enhance their competitiveness by upgrading their digitized production automation platform to a fully intelligent solution.

Limits of IPv4

IoT-enabled oilfields rely on intelligent infrastructures built on the integration of information and communications components. For legacy plants, like CNPC that have developed their digital automation capabilities step-by-step, one of the primary technical issues standing in the way of a fully realized IoT environment are the communication networks based on the IPv4 address protocol. Because the inventory of available IPv4 addresses has been exhausted, the requirements for a complete IoT solution are impossible to meet using this old protocol.

In the production areas where IPv4 has seen continued use, address-block allocations are often discontinuous, which force artificially higher Operations and Management (O&M) costs. In addition, shared physical connections between production networks and office networks have a negative impact on service quality and security.

For all practical purposes, IPv6 breaks the limitations of overextended IPv4 networks by having an unlimited number of IP addresses. IPv6 is highly efficient and flexible. It has an unlimited number of IP addresses. IPv6 is highly scalable. It features a 128-bit address space, allowing for the future growth of the internet. IPv6 is more secure. It provides enhanced security mechanisms to protect data integrity and confidentiality. IPv6 is more efficient. It reduces the need for network address translation (NAT) by providing a global address space. IPv6 is more reliable. It supports Quality of Service (QoS) to ensure that time-sensitive traffic gets priority.

Transitions to IPv6

In the production areas where IPv4 has seen continued use, address-block allocations are often discontinuous, which force artificially higher Operations and Management (O&M) costs. In addition, shared physical connections between production networks and office networks have a negative impact on service quality and security.

For all practical purposes, IPv6 breaks the limitations of overextended IPv4 networks by having an unlimited number of IP addresses. IPv6 is highly efficient and flexible. It has an unlimited number of IP addresses. IPv6 is highly scalable. It features a 128-bit address space, allowing for the future growth of the internet. IPv6 is more secure. It provides enhanced security mechanisms to protect data integrity and confidentiality. IPv6 is more efficient. It reduces the need for network address translation (NAT) by providing a global address space. IPv6 is more reliable. It supports Quality of Service (QoS) to ensure that time-sensitive traffic gets priority.

Transitions to IPv6

In the production areas where IPv4 has seen continued use, address-block allocations are often discontinuous, which force artificially higher Operations and Management (O&M) costs. In addition, shared physical connections between production networks and office networks have a negative impact on service quality and security.

For all practical purposes, IPv6 breaks the limitations of overextended IPv4 networks by having an unlimited number of IP addresses. IPv6 is highly efficient and flexible. It has an unlimited number of IP addresses. IPv6 is highly scalable. It features a 128-bit address space, allowing for the future growth of the internet. IPv6 is more secure. It provides enhanced security mechanisms to protect data integrity and confidentiality. IPv6 is more efficient. It reduces the need for network address translation (NAT) by providing a global address space. IPv6 is more reliable. It supports Quality of Service (QoS) to ensure that time-sensitive traffic gets priority.

Transitions to IPv6

In the production areas where IPv4 has seen continued use, address-block allocations are often discontinuous, which force artificially higher Operations and Management (O&M) costs. In addition, shared physical connections between production networks and office networks have a negative impact on service quality and security.

For all practical purposes, IPv6 breaks the limitations of overextended IPv4 networks by having an unlimited number of IP addresses. IPv6 is highly efficient and flexible. It has an unlimited number of IP addresses. IPv6 is highly scalable. It features a 128-bit address space, allowing for the future growth of the internet. IPv6 is more secure. It provides enhanced security mechanisms to protect data integrity and confidentiality. IPv6 is more efficient. It reduces the need for network address translation (NAT) by providing a global address space. IPv6 is more reliable. It supports Quality of Service (QoS) to ensure that time-sensitive traffic gets priority.

Transitions to IPv6

In the production areas where IPv4 has seen continued use, address-block allocations are often discontinuous, which force artificially higher Operations and Management (O&M) costs. In addition, shared physical connections between production networks and office networks have a negative impact on service quality and security.

For all practical purposes, IPv6 breaks the limitations of overextended IPv4 networks by having an unlimited number of IP addresses. IPv6 is highly efficient and flexible. It has an unlimited number of IP addresses. IPv6 is highly scalable. It features a 128-bit address space, allowing for the future growth of the internet. IPv6 is more secure. It provides enhanced security mechanisms to protect data integrity and confidentiality. IPv6 is more efficient. It reduces the need for network address translation (NAT) by providing a global address space. IPv6 is more reliable. It supports Quality of Service (QoS) to ensure that time-sensitive traffic gets priority.

Transitions to IPv6

In the production areas where IPv4 has seen continued use, address-block allocations are often discontinuous, which force artificially higher Operations and Management (O&M) costs. In addition, shared physical connections between production networks and office networks have a negative impact on service quality and security.

For all practical purposes, IPv6 breaks the limitations of overextended IPv4 networks by having an unlimited number of IP addresses. IPv6 is highly efficient and flexible. It has an unlimited number of IP addresses. IPv6 is highly scalable. It features a 128-bit address space, allowing for the future growth of the internet. IPv6 is more secure. It provides enhanced security mechanisms to protect data integrity and confidentiality. IPv6 is more efficient. It reduces the need for network address translation (NAT) by providing a global address space. IPv6 is more reliable. It supports Quality of Service (QoS) to ensure that time-sensitive traffic gets priority.

Transitions to IPv6

In the production areas where IPv4 has seen continued use, address-block allocations are often discontinuous, which force artificially higher Operations and Management (O&M) costs. In addition, shared physical connections between production networks and office networks have a negative impact on service quality and security.

For all practical purposes, IPv6 breaks the limitations of overextended IPv4 networks by having an unlimited number of IP addresses. IPv6 is highly efficient and flexible. It has an unlimited number of IP addresses. IPv6 is highly scalable. It features a 128-bit address space, allowing for the future growth of the internet. IPv6 is more secure. It provides enhanced security mechanisms to protect data integrity and confidentiality. IPv6 is more efficient. It reduces the need for network address translation (NAT) by providing a global address space. IPv6 is more reliable. It supports Quality of Service (QoS) to ensure that time-sensitive traffic gets priority.
After careful evaluation, CNPC selected Huawei as its exclusive IPv6, IoT network solutions provider, including network survey, planning, design, and installation.

After careful evaluation, CNPC selected Huawei as its exclusive IPv6, IoT network solutions provider, including network survey, planning, design, and installation.

Design and deploy secure information exchange solutions between the IPv6-CNPC intranet and the IPv6-within-the-production network.

Support access to production monitoring and management databases on both IPv4 and IPv6 networks.

Implement three-layer information security architectures, including boundary defenses between internal and external networks for data center applications. Conduct encrypted-transmission experiments.

IoT Production Network

After careful evaluation, CNPC selected Huawei as its exclusive IPv6, IoT network solutions provider, including network survey, planning, design, and installation.

Huawei designed a two-phased solution based on CNPC’s dedicated network.

- ND4HE high-end routers were deployed to build a core layer between the information and data centers.
- CloudEngine CE12800 switches for internetworking Layer 2 traffic with Layer 3 switches using the Spanning Tree Protocol (STP).
- CloudEngine CE12800 switches for internetworking Layer 2 traffic with Layer 3 switches using the Spanning Tree Protocol (STP).
- S12700 Agile Switches as gateways to terminate Layer 2 traffic and perform Layer 3 networking.
- NE40E high-end routers were deployed to build a core layer between the information and data centers.
- S12700 Agile Switches utilize the fully programmable Huawei-developed Ethernet Network Processor (ENP) chips to support the smooth evolution to Software-Defined Networking (SDN) for CNPC.
- CloudEngine CE12800 switches for internetworking Layer 2 traffic with Layer 3 switches using the Spanning Tree Protocol (STP).
- NE40E high-end routers were deployed to build a core layer between the information and data centers.
- S12700 Agile Switches utilize the fully programmable Huawei-developed Ethernet Network Processor (ENP) chips to support the smooth evolution to Software-Defined Networking (SDN) for CNPC.
- PHC One connectivity of CNPC’s dedicated IPv6 IoT network has been completed, and Phase Two is underway. The Huawei solution has included security, reliability, scalability, and extensibility. Huawei’s advanced products are meeting CNPC’s business needs.

All Huawei network products support standard interfaces for proper communication with devices on existing networks. In addition to incorporating advanced technologies such as MPLS VPN, IPv6, IPv6 VPN Provider Edge (VPLS), and VRRPv6, the CNPC solution incorporates years of Huawei’s accumulated experience in large-scale network delivery.

IoT Benefits

Most important, the CNPC IPv6 IoT solution fully illustrates the advantages of intelligent oilfields and has laid a solid foundation for the company to implement advancements in geology, engineering, and management. Following this installation, CNPC has seen higher productivity and a significant improvement in the recovery rates for oil and gas — including progress in the production of cleaner energies, such as coalbed methane. Other benefits of Huawei’s solution include lower network O&M costs, a lighter human workload in harsh environments, and improved security for oilfield network maintenance.

By completing a dedicated IPv6 IoT production network, CNPC has achieved the goal of cross-connecting its IPv4 and IPv6 networks. CNPC has gathered basic research data and gained important experience for the construction of subsequent IoT networks across China and around the world.
Sensor networks combined with data mining analysis of critical operations are bringing the oil and gas industry into the IoT era.>>

Prediction Models for Oilfield Production

By Jianyuan Jiang, Solution Architect, Huawei Products & Solutions Marketing and Solutions Design Department

The Huawei IoT solution equips oilfields to evolve using intelligent optimization from Big Data analytics.

Sensor networks combined with data mining analysis of critical operations are bringing the oil and gas industry into the IoT era.

Evolution to Intelligent Oilfields

Huawei’s IoT architecture is a four-layer [1+2+1] construction that fits well with the energy industry’s transition to intelligent oilfields.

- **The first “1”** refers to a central host platform with open connectivity for applications.
- **The “2”** refers to open network access, including wire and wireless.
- **The final “1”** represents LiteOS, the open IoT operating system.

The Huawei IoT solution equips oilfields to evolve using intelligent optimization from Big Data analytics. ▲

The accumulation of historical data requires modeling and analysis to extract useful information. The use of IoT platforms for predictive optimization allows dynamic adjustments by examining real-time variations in wellhead productivity.

Case 2: Analytics Reduce Costs

The operating efficiency of wellheads directly affects oilfield yields. Maintenance and management of wells are important in production planning to detect, analyze, and resolve mechanical issues in a timely manner. Often, faults that are easily overlooked or hard to locate will have a direct impact on recovered volumes. Tuning pumps must be stopped and repaired as quickly as possible to minimize downtime.

Case 1: Use-Modeling

The resolution to many problems can be fast-tracked with the deployment of oilfield sensor systems. Normal instrumentations include load displacement, flow metering, differential pressure, and temperature measurements. Digital transducers enable IoT platforms to collect real-time data to render pumping unit diagram displays, wellhead productivity detail, fluid content, and other key production information. The pattern of changes in production data are recorded to establish a range of models to depict the normal and anomalous ranges for pump unit operations, sucker-rod vibration effects, pump liquid supply deficiencies, sand production, and heavy oil viscosity. These models provide a reference for well maintenance and management personnel to identify individual well problems, assess related events, and take immediate measures when the expected norms are exceeded. Data monitoring procedures are designed to trend for proactive and predictive maintenance, optimal pumping unit efficiency, long service lives, and, ultimately, maximum wellhead productivity.

Conclusion:

Virtual Reality (VR) technology advances now include simulations of offshore drilling platforms, By means of three-dimensional (3D) displays of drilling platforms and interactive virtual peripherals, the simulation platform supports remote 3D inspection and emergency drilling operations, as well as staff training on complex equipment.

- **3D inspection:** True-to-life inspection experience uses the real-time operating status of remote drilling platforms to graphically display live data for inspection personnel.
- **Staff training:** Staff members interact with simulated drilling platforms using visualization devices for improving the training experience, such as VR helmets, gloves, and physical touch screens.
- **Emergency drills:** By simulating accidents, such as leaks, fires, and explosions, operating staff can train and plan to handle actual emergencies and prevent further escalation.

The Huawei IoT architecture is a four-layer [1+2+1] construction that fits well with the energy industry’s transition to intelligent oilfields.

- **The first “1”** refers to a central host platform with open connectivity for applications.
- **The “2”** refers to open network access, including wire and wireless.
- **The final “1”** represents LiteOS, the open IoT operating system.

The Huawei IoT solution equips oilfields to evolve using intelligent optimization from Big Data analytics. ▲

Digital transducers enable IoT platforms to collect real-time data to render pumping unit diagram displays, wellhead productivity detail, fluid content, and other key production information.

The resolution to many problems can be fast-tracked with the deployment of oilfield sensor systems.

Normal instrumentations include load displacement, flow metering, differential pressure, and temperature measurements.

Digital transducers enable IoT platforms to collect real-time data to render pumping unit diagram displays, wellhead productivity detail, fluid content, and other key production information.

The pattern of changes in production data are recorded to establish a range of models to depict the normal and anomalous ranges for pump unit operations, sucker-rod vibration effects, pump liquid supply deficiencies, sand production, and heavy oil viscosity.

The models provide a reference for well maintenance and management personnel to identify individual well problems, assess related events, and take immediate measures when the expected norms are exceeded.

Data monitoring procedures are designed to trend for proactive and predictive maintenance, optimal pumping unit efficiency, long service lives, and, ultimately, maximum wellhead productivity.

Conclusion:

Virtual Reality (VR) technology advances now include simulations of offshore drilling platforms.
Sinopec Jiujiang Pioneers an Intelligent Factory

By Zongbin Zheng

At the confluence of the Yangtze River and the foot of Mount Fanshan, Sinopec Jiujiang began as Jiujiang Refinery in 1980, and eventually became one of Sinopec’s forty-four subsidiaries. Thirty-five years later, the Jiujiang refinery’s production plant, equipment, and methods were lagging behind its peers. In response, the management of Sinopec Jiujiang is acting on the promise of Industry 4.0 technologies by committing to build smart business applications for planning and scheduling, energy management, safety, environmental protection, device operation, and IT governance. The company’s efforts have created a model for implementing Industry 4.0 factory intelligence in other Sinopec subsidiaries throughout China.

Industry 4.0 in the Petrochemical Industry

Any enterprise choosing to deploy an “intelligent factory” is aiming to achieve operational and management excellence through the use of innovative technology. The concept of “Industry 4.0” includes highly computerized, modular, and integrated factories under visualized control. According to Weizhong Qin, Sinopec Jiujiang General Manager, “Intelligent factory is becoming a reality.”

Strategic Partnership with Huawei

In 2012, Sinopec Jiujiang chose Huawei to design and build its intelligent factory so-solution to achieve company objectives, Sinopec Jiujiang plans to construct three large platforms, consisting of eight primary production systems and two supporting IT systems for each. The three platforms are expected to handle every business activity inside the company, from development and construction to production operations management and control. To help guide their business focus, the intelligent factory project at Sinopec Jiujiang is incorporating input from business departments across the organization in contrast to previous projects within Sinopec that were run by the IT department alone.

Intelligent Factory Initiatives

Sinopec Jiujiang began planning for the intelligent factory in March 2011. The 2012 goal was to define a foundation that included upgraded ICT systems and applications such as Enterprise Resource Planning (ERP) and Manufacturing Execution Systems (MES). Through 2014, key systems installed include:

- Health, Safety, and Environment (HSE) emergency command.
- Energy optimization.
- 3D factory visualization.
- Enterprise business analytics and operations monitoring.
- Business process optimization.

Completion of these items has pushed Sinopec Jiujiang to the top tier of Sinopec’s ICT capabilities. Once fully operational, Sinopec Jiujiang expects to achieve an annual production capacity of one million tons.

To achieve company objectives, Sinopec Jiujiang plans to construct three large platforms, consisting of eight primary production systems and two supporting IT systems for each. The three platforms are expected to handle every business activity inside the company, from development and construction to production operations management and control. To help guide their business focus, the intelligent factory project at Sinopec Jiujiang is incorporating input from business departments across the organization in contrast to previous projects within Sinopec that were run by the IT department alone.

Intelligent Factory Initiatives

Sinopec Jiujiang began planning for the intelligent factory in March 2011. The 2012 goal was to define a foundation that included upgraded ICT systems and applications such as Enterprise Resource Planning (ERP) and Manufacturing Execution Systems (MES). Through 2014, key systems installed include:

- Health, Safety, and Environment (HSE) emergency command.
- Energy optimization.
- 3D factory visualization.
- Enterprise business analytics and operations monitoring.
- Business process optimization.

Completion of these items has pushed Sinopec Jiujiang to the top tier of Sinopec’s ICT capabilities. Once fully operational, Sinopec Jiujiang expects to achieve an annual production capacity of one million tons.

Strategic Partnership with Huawei

Sinopec Jiujiang chose Huawei to design and build its intelligent factory solution. The Huawei intelligent factory solution for the oil and gas industry includes a converged wired and LTE wireless communication platform that considers the special conditions of petrochemical industries. For example, oil refineries are dense with thousands of meters of steel pipe that block and interfere with radio transmission signals. The Huawei LTE solution uses radio frequency technologies with optimized diffraction and propagation performance.

“Once we begin intelligent factory construction, our journey will not end. We will continue to advance our efforts as new technologies and business needs emerge.”

— Weizhong Qin, Sinopec Deputy Director of Information Management
Achieving Grid Parity with Photovoltaics

By Jianfeng Yan, Senior Product Manager, Solar Inverter Marketing Support, Energy Solution Department, Huawei Enterprise Business Group

In March 2015, Xiaoping Xie, YRC’s Chairman and General Manager, outlined the company’s vision for intelligent PV in a press conference showing the company’s achievements. He said, “By combining digital information technology, Internet technology, and the operational systems of photovoltaic power plants, we expect to achieve intelligence in PV power generation and significantly improve the yield of our PV power plants by improving the efficiency of our management and operations. We have organized ourselves to achieve grid parity as quickly as possible.”

China’s PV industry embarked on an Internet+ business model with the launch of a Big Data center in conjunction with the commissioning of a Phase III, 280 MW smart PV plant in Golmud, and the 12 MW smart PV plant in Laxiwa, both in Qinghai Province.

Building Intelligence for PV Power Plants

YRC owns twenty-five PV power plants with a total installed capacity of 1,620.1 MW. Among the factors that handicap the industry in China are solar farms that are in the most remote and harshest of all possible environments.

To accelerate large-scale development of its PV power plants and resolve its O&M and power plant construction problems, the YRC worked with Huawei to integrate new digital information, Internet, and PV power generation technologies. The collaboration has succeeded to build smart PV power plants with significantly increased yield and O&M efficiency.

The Huawei Smart PV system uses an integrated combination of LTE, Bluetooth, and Power-Line Communication (PLC) technologies to seamlessly integrate intelligent handheld terminals, mobile applications, and intelligent unmanned aerial inspection vehicles with PV systems.

At the press conference, Huawei engineers and YRC O&M personnel participating remotely from the Laxiwa plant demonstrated the following:

- Preventive inspection by unmanned aerial vehicles.
- Remote diagnosis.
- Mobile O&M.
- Preventive inspection by unmanned aerial vehicles.
- Big Data analysis.

The Huawei Smart PV system uses an integrated combination of LTE, Bluetooth, and PLC technologies to seamlessly integrate intelligent handheld terminals, mobile applications, and intelligent unmanned aerial inspection vehicles with PV systems.
The demonstration allowed the guests at the conference to experience first-hand the sophistication of a modern, smart PV power plant. In addition to remote expert assistance service using real-time audio and video communication, local and remote personnel also demonstrated real-time data collection, cloud storage, Big Data mining, and an online, automated system for maintenance analysis that generates recommendations for optimal cleaning cycles and component replacements. “If a 500 KW inverter stops working for one week, the electricity loss will amount to USD 3,000,” added Yingtong Xu. “The intelligent monitoring and remote diagnosis functions help implement real-time maintenance and minimize the wait time. Such maintenance is easier to perform and can effectively reduce electricity losses caused by faults. The Huawei smart PV Solution has attracted the attention of the global PV industry. More than 50 industry professionals from Japan, Germany, and the United States have visited our smart PV power plants.”

Internet+ PV = Smart PV

The YRC has plans to install another 46.5 GW between 2016 and 2020, including 40 GW of hydraulic tracking PV capacity. ICT technologies have changed from support systems to production systems that drive value creation. This trend creates more strategic choices for enterprise leaders, making it easier for enterprises to break from traditional business limitations. Xiaoping Xie said, “Smart PV power plants have higher electricity conversion rates and lower construction and operation costs. They also interwork with grids better than conventional power plants, promoting healthy development of the industry.”

“While there is still plenty of room for further integration of Internet and solar PV technologies, the YRC’s Laxiwa PV power plant is a good example of the benefits that occur when the two technologies are combined,” concluded Dinghuan Shi, Chairman of the Chinese Renewable Energy Society, in his closing remarks. “The Laxiwa project is a success due to the joint efforts of the Qinghai Province, YRC, and Huawei, who achieved synergistic advantages beyond Internet+ PV construction.”

Huawei provides a variety of advanced products for the energy industry, including intelligent inverters, wireless broadband trunking systems, industry-grade switching routers, multi-functional telepresence systems, and high-end servers and storage products. These products have been widely deployed by enterprises in the energy industry, helping to build Huawei’s brand recognition in energy products.

Remote Management Secures Vital Gas Pipeline

By Shaofeng Hou, Solution Architect, Energy Solution Department, Huawei Enterprise Business Group and Xia Huang, Solution Sales Manager of Oil & Gas Industry, Central Asia Solution Sales Department, Huawei Enterprise Business Group

The Central Asia-China Gas Pipeline was built and is operated by Asia Gas Pipeline (AGP) LLP, a joint venture between China National Petroleum Corporation (CNPC) and KazMunaiGas, Kazakhstan’s state-owned oil and gas company. Consisting of three parallel gas lines, the pipeline stretches 1,833 km from the Aru Daya River, separating Turkmenistan and Uzbekistan, to the western Chinese border town of Horgos.

With a pipe diameter of 1,067 mm each, and a combined delivery capacity of 30 billion cubic meters per annum, Lines A and B became operational in December 2009 and October 2010, respectively. For Line C, with a 1,219 mm pipe diameter and a delivery capacity of 25 billion cubic meters per annum, construction began in 2012 and came online in 2014. The 55 billion cubic meters combined capacity is approximately 20 percent of China’s annual natural gas consumption and provides the equivalent energy of 73 million tons of standard coal. The use of natural gas rather than coal will eliminate 78 million tons of carbon dioxide and 1.21 tons of sulfur dioxide emissions every year. This enormous capacity has created a billion-dollar marketplace for trading natural gas to China from its neighbors to the West.

The more recent construction of Line C provided an opportunity to incorporate the most advanced communications technology for remote command and control.
Secure, Automated Pipe
During pipeline construction, AGP decided that the communications infrastructure, including a supervisory control and data acquisition (SCADA) system, would be built along with the pipeline using the most advanced automation technologies available. A state-of-the-art operation would be ensured from the start.

Given the remote, rugged terrain, difficult climate, and demanding security requirements, construction of the Kazakhstan-China gas pipeline would not be easy, and once operational, routine on-site inspections would be few and far between. AGP required a broadband communications system accessible from many terminal types for real-time analysis, effective troubleshooting, and support for a comprehensive security management system to quickly neutralize threats of theft, sabotage, and other “forces majeures.”

Building an Intelligent Pipeline
A system integrator was needed with responsibility for managing the communications and SCADA systems.

Together, KazStroyService Ltd. — an Almaty, Kazakhstan-based engineering, procurement, and construction company — and Huawei proposed an open, multi-vendor, end-to-end broadband communications platform for voice, data, and video feeds for command and control, monitoring, and security systems.

Huawei proposed an open, multi-vendor, end-to-end broadband communications system. This system, coupled with a video surveillance system, would provide link redundancy to the Almaty Control Center (ACC) from five pumping stations, two monitoring stations, and thirty-three valve stations.

To protect the terrestrial network, the optical plant is a typical Synchronous Digital Hierarchy (SDH) ring topology. If the optical circuits ever go offline, critical SCADA and emergency voice circuits are routed to the emergency satellite backup. The failover time is 50 milliseconds, and is invoked by protection circuits at the board, device, and system levels.

With Huawei’s help, the Kazakhstan-China gas pipeline implements a true synchronous network. Huawei’s AGP experienced cross-platform integrated Network Management System (NMS) makes management and control of the telecommunications system easy, and ensures personnel safety, and responds rapidly to production accidents. Huawei deployed an Intelligent Video Surveillance (IVS) system and Intrusion Detection System (IDS) that includes a station access control system and an industrial-grade broadcast system. The IDS system and access control system are linked at key points with the IVS system so that security staff is able to receive and respond to alarms as quickly as possible.

Huawei’s cross-platform integrated Network Management System (NMS) to monitor pipeline status in real-time. The NMS also fully automates analysis and statistics systems for visibility into the pipeline’s operating status, assisting pipeline managers to head off looming threats.

3rd of Three
The design, procurement, and construction of the communications system for Line C of the Central Asia-China Gas Pipeline are currently underway by Huawei. Upon completion in 2016, AGP will enjoy having the latest-generation digital communications solutions to provide remote real-time monitoring, uniform data transmission, and management services for all the stations along Lines A, B, and C of the pipeline, making for a secure, stable, and efficient “artery of energy” across the Asian continent.
Huawei's IoT Vision for the Digital Oilfield

By Stephen McBride, Editor, ITPro

Huawei’s digital-oilfield concept rests on the company’s overall vision for a four-layer Internet of Things (IoT) platform. This article describes the platform and several of the crucial technologies needed to apply the IoT to meet the needs of oil and gas production, including mobile solutions and security capabilities. These topics were in the spotlight recently at the Global Energy Industry Summit 2015 in Almaty, Kazakhstan. Attendees expressed a variety of concerns about efficiency, employee safety, and network security.

Stephen McBride, Editor, ITPro

With oil prices falling, producers need the efficiency of mobile solutions built on the IoT. >>

Huawei’s IoT Vision for the Digital Oilfield

Huawei’s digital-oilfield concept rests on the company’s overall vision for a four-layer Internet of Things (IoT) platform. This article describes the platform and several of the crucial technologies needed to apply the IoT to meet the needs of oil and gas production, including mobile solutions and security capabilities. These topics were in the spotlight recently at the Global Energy Industry Summit 2015 in Almaty, Kazakhstan. Attendees expressed a variety of concerns about efficiency, employee safety, and network security.

Stephen McBride, Editor, ITPro

With oil prices falling, producers need the efficiency of mobile solutions built on the IoT. >>

Huawei’s IoT Vision for the Digital Oilfield

By Stephen McBride, Editor, ITPro

Huawei’s digital-oilfield concept rests on the company’s overall vision for a four-layer Internet of Things (IoT) platform. This article describes the platform and several of the crucial technologies needed to apply the IoT to meet the needs of oil and gas production, including mobile solutions and security capabilities. These topics were in the spotlight recently at the Global Energy Industry Summit 2015 in Almaty, Kazakhstan. Attendees expressed a variety of concerns about efficiency, employee safety, and network security.

Stephen McBride, Editor, ITPro

With oil prices falling, producers need the efficiency of mobile solutions built on the IoT. >>

Huawei’s IoT Vision for the Digital Oilfield

By Stephen McBride, Editor, ITPro

Huawei’s digital-oilfield concept rests on the company’s overall vision for a four-layer Internet of Things (IoT) platform. This article describes the platform and several of the crucial technologies needed to apply the IoT to meet the needs of oil and gas production, including mobile solutions and security capabilities. These topics were in the spotlight recently at the Global Energy Industry Summit 2015 in Almaty, Kazakhstan. Attendees expressed a variety of concerns about efficiency, employee safety, and network security.

Stephen McBride, Editor, ITPro

With oil prices falling, producers need the efficiency of mobile solutions built on the IoT. >>
Historically, economic revolutions have sprung from the convergence of new communication technologies and new energy systems. Today, Internet technologies and renewable energies are about to collide to create a powerful new infrastructure for a Third Industrial Revolution.

Jeremy Rifkin

Mr. Rifkin is the bestselling author of twenty books on the impact of scientific and technological changes on the economy, the workforce, society, and the environment.

Book Review by
Yanjing Xiao

Mr. Rifkin is the bestselling author of twenty books on the impact of scientific and technological changes on the economy, the workforce, society, and the environment.

The Third Industrial Revolution

By Jeremy Rifkin

Book Review by
Yanjing Xiao

Mr. Rifkin is the bestselling author of twenty books on the impact of scientific and technological changes on the economy, the workforce, society, and the environment.

The Third Industrial Revolution

By Jeremy Rifkin

In his book, Rifkin envisions hundreds of millions of people producing their own green energy in homes, offices, and factories, and sharing it with each other over an energy Internet, much the same way they share information today online. This socialization of energy will fundamentally change the way human beings relate, conduct business, educate children, and engage in civic society.

The final stage of the Second Industrial Revolution, which includes fossil-fuel technologies, among others, is upon us. Rifkin believes that this reality might be hard for some people to accept, pushing them to make a swift transition to new industrial power systems.

Rifkin's insight shows that, historically, economic revolutions have emerged from collaborative alliances made up of affiliated enterprises and consumers. These alliances are about to collide to create a powerful new infrastructure for a Third Industrial Revolution.

The following are some highlights from Rifkin's book:

1. The cost of photovoltaic power generation is expected to fall by 80 percent annually — by half every eight years. Research by Stanford University on global wind energies shows that the capture of 20 percent of Earth's wind energy would generate seven times the current level of global electricity consumption.

2. Five pillars of the Third Industrial Revolution are: (1) shifting to renewable energy; (2) transforming the power plants of every continent into micro-power plants to collect renewable energies locally; (3) deployment of hydrogen stores and other storage technologies in every building, and throughout the entire infrastructure, to store intermittent energies; (4) transforming the power grid of every continent into an energy-sharing Intergrid that also connects to the Internet; (5) transitioning transport fleets to electric plug-in and fuel-cell vehicles that buy needed electricity from an interactive, continental power platform.

3. The cost of maintaining old infrastructures continually grows, while the cost to build new infrastructures remains relatively low. In return, new infrastructures boost economic development by creating new jobs and supporting new enterprises.

4. While 70,000 jobs will be created in the plan to build 24 new nuclear power plants in the United States by 2030, while increasing renewable energy by 20 percent between 2010 and 2030.

5. The cost of photovoltaic power generation is expected to fall by 80 percent annually — by half every eight years. Research by Stanford University on global wind energy shows that the capture of 20 percent of Earth's wind energy would generate seven times the current level of global electricity consumption.

6. Governments, local businesses, and civil organizations should all actively participate in the Third Industrial Revolution. Transformations in municipal, regional, and national infrastructure will affect everyone eventually, changing the way people live, work, and play.

7. More farmers are transforming their farms into micro-power plants, harnessing wind, solar, geothermal, and bio energies to slash energy consumption. Energy conservation is passed down to consumers through decreasing annual fees.

8. Both "shared savings contracting," and "energy performance contracting" are collaborative business models within the Third Industrial Revolution.

9. Fields such as clean energy, green construction, electronic communication, and micro-power generation systems are gaining economic momentum in the presence of renewable energy revolution, and new seeds are opening for emerging technologies, products, and services.

10. Due to its distributed nature, the most-suitable renewable energy can help a city like San Antonio, Texas fulfill its commitment to lower greenhouse gas emissions by 20 percent while increasing renewable energy by 20 percent between 2010 and 2030.

11. Supporters believe that the first and second revolutions relied on fossil fuels, which can only be produced in certain areas and secured by large military and geopolitical operations. Therefore, only developed countries benefit from them. As renewable energies are available everywhere, the new revolution can be fueled by developed and undeveloped countries.

12. Conventional, centralized, top-to-bottom business operations that are characteristic of the first and second industrial revolutions will face increasing challenges from the new, collaborative business practices of the Third Industrial Revolution.

13. Social Darwinism posits that progress is the result of conflict in which the societies that adapt best are those that will prevail. This is analogous to the conclusion of recent scientific developments regarding geochemical processes: evolution is a process of natural selection that ensures the continuity of life within the ecosystem.

14. Transformations from fossil fuels to distributed renewable energies will redefine and represent international relations from an ecological perspective. Although renewable energies are in abundance, widely available, and easily shared, harnessing this energy will require an active, collaborative management of the earth's ecological systems — which, in turn, is likely to open further possibilities for global cooperation.

In his book, Rifkin not only points that a third industrial revolution will be brought about by the convergence of Internet technologies and renewable energies, but also discusses how the democratization of energy will profoundly impact society, economics, and political practices around the world for generations to come.
To read or download ICT Insights ISP Extra in electronic form, visit

To subscribe to ICT Insights, contact the Editorial Board.

Email: ICT@huawei.com
Address: H2, Huawei Industrial Base, Bantian, Longgang, Shenzhen 518129, China
Tel: +86 (755) 28780808 (010)82882758
Large-scale electricity networks become modernized with the addition of ICT connectivity and information services.

(p34)

Key “Things” about Energy

An Interview with Sanqi Li, Huawei Chief Scientist

(p26)