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Computing

Building a Fully Connected, 
Intelligent World  



A decade ago, humanity generated just a few 
zettabytes[1] of data every year, and mobile 
Internet, cloud computing, and big data were still 
in their infancy. Today, these technologies are 
profoundly changing our world, and computing is 
playing an unprecedented role. 

By 2030, we will be producing yottabytes[1] of data 
every year. The amount of general computing 
power in use will increase tenfold, and AI 
computing power will increase by a factor of 500[2]. 
The digital and physical worlds will be seamlessly 
converged, allowing people and machines to 
interact perceptually and emotionally. AI will 
become ubiquitous and help people to transcend 

human limitations. It will serve as scientists' 
microscopes and telescopes, enhancing our 
understanding of everything from the tiniest quarks 
to vast cosmological phenomena. Industries already 
making extensive use of digital technology will 
now use AI to become more intelligent. Computing 
energy efficiency will increase, bringing us closer to 
low-carbon computing, so that digital technologies 
can become a tool for achieving the global goal of 
carbon neutrality. 

In the next decade, computing will help us move 
into an intelligent world – a process of the same 
epochal significance as the age of discovery, the 
industrial revolution, and the space age.
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After half a century of development, 
computing has become deeply integrated 
into every aspect of our work and lives. In 
the next decade, computing will become 
the cornerstone of the intelligent world and 
continue to support economic development 
and scientific advances. 

Looking ahead to 2030, many countries and 
regions, including China, the EU, and the US, 
will prioritize computing in their national 
strategies. China's 14th Five-year Plan and 
Vision 2035 define high-end chips, artificial 
intelligence (AI), quantum computing, and 
DNA storage as technologies of strategic 
importance for the country. The EU's 2030 
Digital Compass: the European Way for the 

Digital Decade lays out a plan whereby, 
by 2030, 75% of EU companies will be 
making full use of cloud, AI, and big data, 
and the EU will have its first homegrown 
quantum computer. The US has reintroduced 
the Endless Frontier Act, which authorizes 
the government to legislate and make 
grants to promote US research in areas 
such as AI, high-performance computing, 
semiconductors, quantum computing, data 
storage, and data management technologies.

In 2030, the digital and physical worlds 
will be seamlessly converged. People and 
machines will interact with each other 
perceptually and emotionally. Computing 
will be able to simulate, enhance, and 

Macro trends
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recreate the physical world. Hyper-real 
experiences will drive computing to the 
edge, and necessitate multi-dimensional 
collaborative computing between cloud and 
edge, between edge and edge, and between 
the digital and physical worlds. AI will evolve 
from perceptual intelligence to cognitive 
intelligence and develop the capacity for 
creativity. It will become more inclusive 
and make everything intelligent. As the 
boundaries of scientific exploration continue 
to expand, the demand for computing 
power will increase rapidly. Supercomputers 
that can perform 100 EFLOPS[2] and a new, 
intelligent paradigm for scientific research 
will emerge. In the push toward global 
carbon neutrality, computing of the future 

will be greener, and service experience will 
get better. 

The semiconductor technologies that 
computing relies on are approaching 
their physical limits, and this will spark a 
golden decade of innovation in computing. 
Innovation in software, algorithms, 
architecture, and materials will make 
computing greener, more secure, and more 
intelligent. It is estimated that by 2030, 
global data will be growing by one yottabyte 
every year. Total general computing power 
will see a tenfold increase and reach 3.3 
ZFLOPS, and AI computing power will 
increase by a factor of 500, to more than 
100 ZFLOPS[2]. 
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Future computing scenarios
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Smarter AI

AI-enabled smart transportation

By 2030, the number of electric vehicles, vans, 
heavy trucks, and buses on the road worldwide 
is expected to reach 145 million. Today, all these 
means of transportation run up against the 
limited capacity of our road networks. Intelligent 
transportation is the key to solving this problem.

There will be a wide range of intelligent 
transportation use cases that use cameras, radars, 

and weather sensors to collect various types of 
data. At the edge, data will be read to identify 
vehicles, traffic accidents, road conditions, and 
more, and to generate a multidimensional 
representation of a stretch of road. In the cloud, 
a digital twin of roads across the city will be 
produced, constituting a multidimensional 
representation of real-time and historical road 
conditions. Policy-based computing on the cloud 
can help generate different commands for every 
vehicle and every road, and manage vehicles and 
traffic signals.

The sheer volume of data involved means 
that the bottleneck to be addressed is not the 
capacity of our roads, but the capacity of our 
computing networks. Suppose a vehicle runs 
two hours a day on average. For each running 
vehicle, the compressed data uploaded per 
second will increase from 10 KB today to 1 MB in 
2030, meaning that for every 100,000 intelligent 
connected vehicles, about 720 TB of data will 
need to be transmitted every day. The data 
generated by each running vehicle will need to 
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be frequently exchanged between the vehicle 
itself and the city.

With the help of intelligent transportation 
infrastructure that can store and analyze such 
massive amounts of data, urbanites can look 
forward to quicker daily commutes (15–30 
minutes shorter, on average), less frequent 
traffic accidents, and vehicles with lower carbon 
footprints. Increased computing power will 
boost transportation safety, efficiency, and 
user experience, facilitating socioeconomic 
development.

AI-enabled autonomous vehicles
L4 autonomous vehicles will be commercially 
available on a large scale, and data will be 
continuously sent to the digital twin. AI learning 
and training will continue in the digital world, 
so that AI models will become smarter and 
eventually outperform humans in coping with 
complex road conditions and extreme weather. 
In time, AI will even make L5 autonomous 
vehicles a reality. The computing power required 
for intelligent driving will far outstrip what 
Moore's Law can provide. The corner case library 
will continue to expand and the demand for 
computing power will increase. By 2030, an L4 
or higher-level autonomous vehicle will require 
computing power of 5,000 TOPS.

The training of AI models will involve 
introducing unsupervised or weakly 
supervised learning into closed-loop data, 
and using images and visual information 
obtained from vehicle snapshots to support 
automatic, unsupervised, video-level AI 
machine learning and training. Autonomous 
vehicles demand device-cloud computing. In 
the future, a vehicle manufacturer will need 
at least 10 EFLOPS of computing power on 
the cloud.

Smart cities
Urban areas make up 2% of the world's land 
surface, and are home to more than 50% of the 
world's population. Cities consume two thirds of 

the world's energy and are responsible for 70% 
of global greenhouse gas emissions (including 
over 25 billion tons of carbon dioxide). Smart 
city governance will be the way forward for cities 
that want to achieve sustainable development. 
IoT sensors will collect the environmental data 
that is needed to support the operations of 
smart cities. In the future, every physical object 
will have a digital twin. Digital cities made up 
of digital buildings, digital water pipes, and 
other infrastructure will be a powerful tool 
for intelligent urban management. Smart city 
governance will aggregate 100x more data than 
conventional city governance and make our cities 
more efficient.

The data storage and analysis capabilities of 
smart energy infrastructure will make it possible 
to manage urban energy supply and demand in 
one system, and to schedule urban energy more 
efficiently through real-time data processing. For 
example, a real-time energy efficiency map can 
be drawn based on urban energy consumption 
data. This will help dynamically monitor energy 
usage and ensure targeted energy scheduling, 
which will cut average electricity consumption in 
peak hours by more than 15%.

The quality of public services like meteorology, 
oceanography, and earthquake prediction can 
deeply affect the life of each resident in a 
city, and these services rely on massive data 
computing and processing. With a greater 
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volume and diversity of urban and natural 
environment data, smart public services will 
help better predict the impact of weather, 
oceans, and earthquakes on urban life, making 
cities more resilient to extreme events. With 
these smart public services, residents can 
gauge the impact of climate or emergency 
events on themselves and their communities 
using the push messages tailored to their 
geographic locations.

Data will be at the core of efficient operations 
of smart cities. How can we effectively manage 
and use the massive data generated? This is a 
question we must answer if we want to promote 
the development of smart cities.

More inclusive AI

AI-enabled precision medicine

In the healthcare sector, AI is already able 
to automatically identify tiny lung nodules, 
saving doctors a lot of time compared to 
conventional identification with the naked 
eye and manual tagging. AI will play a 
bigger role in more complex consultations. It 
will be deeply integrated into the diagnosis 
process, providing explainable diagnoses and 
predicting outcomes. The future will bring 
a new model of healthcare in which AI will 
provide solutions, and the role of doctors 
will be to check and approve them. The 

World Health Organization estimates there 
will be a shortage of 18 million healthcare 
professionals by 2030, and AI offers a viable 
solution to this problem. 

AI-enabled drug screening

AI will become more transparent. It will not 
make judgments inside a black box. Instead, it 
will show the reasoning behind its conclusions 
so that we can understand its thinking 
process. Greater transparency will allow AI 
to play a greater role in more domains and 
help us perform more complex tasks, such as 
screening antiviral drugs. AI will be able to 
tell us why the drugs are selected, instead of 
just giving us a list of drugs selected. Results 
on their own, without the decision-making 
processes, cannot help us make informed 
decisions.

AI-enabled personalized education
The process of AI training is also a process 
of better understanding ourselves. AI makes 
it more important to understand human 
intelligence and how the human brain works. 
This will in turn push humans to rethink and 
reform education[3]. AI of the future will change 
our learning and cognition processes. For 
example, AI instructors will analyze students' 
behavior, habits, and abilities in detail and 
then develop personalized teaching content 
and plans. This will help students acquire 
knowledge more easily and realize their full 
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potential. 

AI will be integrated into every aspect of our lives. 
It will allow us to analyze, create, and study more 
efficiently, and open up high-quality resources 
to many more people. AI will make services like 
precision healthcare, creative design, cultural 
education, elderly care, community services, and 
autonomous driving more inclusive.

Deeper perception

By 2030, there will be 200 billion connections. 
Hundreds of trillions of sensors will be collecting 
information about the physical world, including 
temperature, pressure, speed, brightness, 
humidity, and chemical concentration. Turning 
this basic data into sensory information to 
give robots vision, hearing, taste, smell, and a 
sense of touch will require deeper perceptual 
capacities. Issues of data quantity and 
latency mean that the process of computing 
for generating sensory information must be 
completed at the edge. The edge will therefore 
need to be able to intelligently process data, 
which would include simulating how the human 
brain processes information. In the future, a 
large amount of perceptual computing will be 
completed at the edge, where about 80% of 
data will be handled.

Perceptual intelligence makes the gathering 
and analysis of vast flows of data possible. It 

will enable more industries to perceive their 
work, and to build digital twins in the cloud. 
Digital twins remain in constant balance with 
their physical models, and support digital 
innovation.

Intelligent agriculture

In the future, an intelligent space-air-
ground integrated network will be built and 
continuously optimized for remote sensing 
and monitoring of agricultural information. 
Advanced information technologies, such as 
the Internet, the Internet of Things (IoT), big 
data, cloud computing, and AI, will be deeply 
integrated with agriculture. This will create a 
brand-new model of agricultural production 
that features agricultural information sensing, 
quantitative decision making, intelligent 
control, targeted investment, and personalized 
services. Applications like smart fields, smart 
greenhouses, smart farming, smart planting, 
and spraying drones will have increased 
demand for edge AI computing. Intelligent 
agricultural sensing and control systems, 
intelligent agricultural machinery, and 
autonomous field operation systems will be 
deployed. These will promote the development 
of e-commerce, food source tracing and anti-
counterfeiting, tourism, and digitalization in 
the agriculture sector. Agriculture will become 
more digital, connected, and intelligent.

Intelligent control of equipment
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AI will be increasingly adopted in enterprises' 
production systems. It will support every aspect 
of company operations, improving workflows, 
staffing, and coordination across different 
departments and different sites. Over the next 
decade, AI will bring massive improvements in 
quality and cost savings in critical production 
processes. With the support of AI, manufacturers 
can achieve intelligent operations and 
management, massive data analysis and mining, 
and lower-latency diagnosis and warning.

The Made in China 2025 plan has a target of 
universal adoption of AI in key manufacturing 
sectors, with 50% reductions in operating 
costs, production time, and defects in showcase 
projects. In deep learning use cases, such as 
bearing fault diagnosis, steel furnace thermal 
anomaly detection, and power device overhaul, 
factories can use AI to diagnose problems and 
send warnings faster, detect production problems 
more efficiently, and shorten order delivery cycles. 

Production robots

Workers who once operated machines in 
harsh environments will be able to operate 
them remotely. More non-operational tasks of 
enterprises will involve AI. Humans and machines 
will seamlessly collaborate with each other. AI 
will reshape enterprises' business operations at 
every level, from product design, production, and 
sales to enterprise architecture, employee hiring, 
and training. For example, enterprises will use AI 
to analyze factors such as economic development 
and current events and assess their own growth 
and trends across the industry. They will then 
optimize their production plans and create new 
solutions as input for decisions on new product 
concepts. AI will play an especially important role 
in flexible manufacturing that meets personalized 
needs. It can design customized products and 
even generate new product designs based on 
demand changes and product usage. We project 
that by 2030, there will be 390 robots per 10,000 
workers. These robots will be able to accurately 
understand people's instructions, sense the 
environment, and provide recommendations.

Lights-out factories, with no human workers 
at all, are already in widespread use. AI robots 
are busy on production lines and in logistics, 
freeing humans from repetitive, boring tasks. In 
the future, machines will help humans handle 
dangerous jobs in harsh environments, even in 
highly variable scenarios. People will no longer 
need to operate machines onsite. Instead, they 
will be able to command the machines remotely 
from the safety and comfort of a control room.

In the mining industry, for example, China has 
set the goal of achieving intelligent decision-
making and automatic collaborative operations 
by 2025 in large coal mines and mines where 
severe disasters have occurred in the past. Key 
roles down in the mines will be assumed by 
robots, and few, if any, actual workers will have 
to work underground. The longer-term goal is to 
build an intelligent coal mine system featuring 
intelligent sensing, intelligent decision-making, 
and automatic execution by 2035.[4]
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AI will make enterprises more intelligent as it will 
play a greater role in creative work, rather than 
just operational work. AI will be more deeply 
involved in our thinking process and will better 
interact with people while showing the reasoning 
behind its conclusions. It will become more 
reliable and take on a bigger role in complex 
fields that require high-quality decisions, such as 
finance, healthcare, and law. In the next decade, 
AI will continue learning about the physical world 
and will become smarter. AI will move beyond 
well-understood scenarios and play a bigger role 
in empowering humans to do better in more 
complex tasks. AI will help people transcend 
human limitations.

An experience beyond reality

Intelligent interaction in living spaces

The AI of today has already helped people 
complete tasks that were impossible in the past. 
For example, we can use the cameras on our 
phones to identify plants and obtain information 
about their habits and how to grow them. Robots 
are helping humans perform better. For example, 
exoskeleton robots can help patients recovering 
from accidents. Home robots can perform 
intelligent work like keeping the elderly company 
and doing household chores. It is estimated that 
more than 18% of homes will use intelligent 
robots by 2030.

When AI participates in human thinking and 
creation, it must be able to explain its thought 
processes in terms that people can understand. 
This means that AI needs to be able to use 
natural language to articulate the logic behind 
its recommendations. AI will make a leap from 
perception to cognition, and from weak AI to 
strong AI.

AI has already made initial attempts at poetry 
writing and painting. The AI of the future will 
be able to perform more complex creative work, 
like film making, art, and industrial design. AI 
will provide highly customized content services, 
so that people can get a tailor-made painting or 

movie at any time. When watching a movie, the 
audience will be able to decide how the story 
goes. Based on audience choices, AI will analyze 
potential storylines and develop the video in 
response. Each viewer will experience the movie 
differently, making the content richer. It will also 
be possible for people to supply a theme and let 
a creative AI fill in the blanks. This will inspire our 
creativity and add another layer of richness to 
our lives.

AR/VR in living spaces
Data will create many digital spaces, such 
as virtual tourist attractions, holographic 
conferences, and virtual exhibitions. These digital 
spaces, together with the physical world, will form 
a hybrid world. Virtual tours can give us a true-
to-life experience of scenery on the other side 
of the world. They will also allow us to sit side 
by side and talk with friends thousands of miles 
away, or have wide-ranging conversations with 
luminaries of the ancient world. The way people 
communicate with other people, communities, 
nature, and machines will be revolutionized, 
and our ways of living, work, and study will be 
redefined. It is estimated that by 2030, more 
than 30% of businesses will operate and innovate 
digitally, and there will be one billion augmented 
reality (AR) and virtual reality (VR) users.

Virtual world / Metaverse in living spaces

The seamless convergence of the digital and 
physical worlds requires the ability to accurately 
perceive and recreate the physical world, and 
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the capacity to understand user intentions in 
the hybrid world. The demand for a hyper-
real experience means that computing will be 
brought closer to the edge. Multi-dimensional 
collaborative computing is required between 
cloud and device, device to device, and between 
the virtual and physical words. The physical 
world will be modeled and mirrored on the 
cloud, and following a process of computing 
and the addition of virtual elements, will be 
recreated digitally. Edge devices will be able 
to hear, see, touch, smell, and taste, and real-
time interaction between people and devices 
will be possible. Multi-dimensional collaborative 
computing will change a user's environment 
into a supercomputer that is able to compute 
environment information, identify user intentions, 
and display a virtual world using technologies 
such as holography, AR/VR, digital smell, and 
digital touch.

More precise exploration into 
the unknown

The "high-performance computing (HPC) + 
physical models" approach has been widely 
applied in many scientific domains. As humans 
continue to study quantum mechanics, life 
sciences, the Earth's atmosphere, and the origins 
of the universe, our cognitive boundaries will 
continue expanding to embrace phenomena at 
both the subatomic and cosmological scales, in 
which the distances can be as short as 10-21 m, 
or as vast as 1028 m. The amount of data and 
computing that scientists have to process will 
grow exponentially. The amount of computing 
power available in the digital world determines 
how deep and how broad we can explore in the 
physical world.

CERN, the European Organization for Nuclear 
Research[5], built a computing pool by connecting 
supercomputers located worldwide. Scientists 
used this pool to analyze nearly 100 petabytes 
of data generated by its Large Hadron Collider 
(LHC), and ultimately proved the existence of the 
Higgs boson in 2012. The CERN plans to use the 

High-Luminosity LHC (HL-LHC), a major upgrade 
of the LHC, by the end of 2027, which will be able 
to produce more than 1 billion proton-proton 
collisions per second. The amount of data to be 
computed will be 50–100 times greater than that 
used to prove the existence of the Higgs boson, 
and zettabytes of data will need to be stored. By 
2030, computing will help scientists solve basic 
problems in more domains. 

Environmental monitoring
Environmental protection is a top priority for 
humanity. New technology and equipment will be 
powered by AI to ease environmental problems 
such as the greenhouse effect, soil desertification 
and salinization. Models built based on big 
data will help predict the results of different 
management measures, which can be fed back 
to algorithmic models to come up with better 
governance models, like accurately locating 
pollution sources and predicting pollution 
diffusion.

Weather forecasting
Future weather forecasts will use more complex 
dynamic numerical models to predict the weather 
more accurately. Potential applications include 
weather radar quality control, satellite data 
inversion and assimilation, as well as weather 
and climate analyses (e.g. short-range and 
imminent weather forecasts, probability forecasts, 
typhoon forecasts, extreme or catastrophic 
weather warnings, storm environment feature 
classification, and environmental forecasts). 
Take short-range local weather forecasts as an 
example. Torrential rainfall in a short period of 
time is an extremely destructive phenomenon, 
but it is difficult to forecast when it will happen, 
because it requires massive amounts of data and 
huge computing power. If we were to increase the 
granularity of weather forecasts from the current 
10 x 10 km to 1 x 1 km, that would increase 
the amount of data and computing power 
needed by two or three orders of magnitude. It 
is expected that by 2030, with the emergence of 
supercomputers that can perform 100 EFLOPS, 
more accurate climate simulations and weather 
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forecasts will be possible. 

Seismic and ocean prediction
In the future, AI will be used to monitor 
earthquakes and estimate the focus of 
earthquakes in real time, which will make 
prediction much more accurate. It is very time-
consuming to calculate the focal mechanism (also 
called a fault-plane solution) based on seismic 
records. Ever since seismologists began calculating 
fault plane solutions in 1938, focal mechanism 
parameters have been a huge challenge. AI can 
effectively solve this complex computing problem. 
Seismic data can be used to train AI neural 
networks, which can make prediction systems 
more accurate and reliable. This will further drive 
breakthroughs in earthquake prediction.

Exploring the structure of the universe

The large-scale structure of the universe is one 
of the most important current fields of science. 
Scientists are studying the formation and 
evolution of cosmic structures over time, to find 
answers to questions about the composition of 
the universe, the process of cosmic evolution, 
dark matter, and dark energy. The conventional 
method is to use a supercomputer to calculate 
the evolution of various large-scale structures 
in the universe based on our current physical 
theories, and then compare the results with 
observed data. This, however, requires accurate 
calculations for hundreds of thousands—or even 
millions—of cosmological objects. As of today, 
there are two trillion galaxies and countless 

planets in our observable universe. Even if 
we were to pool all of the world's computing 
resources together, it would still be impossible to 
complete the calculations.

More accurate simulation of the 
real world
More precise wind tunnel simulation

Computer wind tunnel simulation is now 
an important test method for high-speed 
vehicles such as aircraft, high-speed trains, and 
automobiles. However, due to the huge amount 
of computing required for these simulations, 
the testing system needs to be broken down 
into sub-systems like tire and engine, and then 
further divided into even smaller systems to get 
precise simulation results. This will pose new 
challenges in verifying whether system design 
meets requirements. As computing power will 
increase by 2 to 3 orders of magnitude in the 
future, wind tunnel simulation is expected to be 
used in larger sub-systems, or even for the entire 
system.

AI-enabled research on new drugs
When it awarded the 2013 Nobel Prize 
in Chemistry to three scientists "for the 
development of multiscale models for complex 
chemical systems", the Nobel Committee stated 
that, "Today the computer is just as important 
a tool for chemists as the test tube. Computer 
models mirroring real life have become crucial 
for most advances made in chemistry today."
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Quantum mechanics/molecular mechanics 
(QM/MM)[6] modeling is one of the most 
reliable methods for simulating the catalytic 
mechanisms of enzymes. The high-precision 
QM model is used in core regions of the 
enzyme, and the low-precision MM model 
is used in peripheral regions. This approach 
combines the accuracy of QM and the fast 
speed of MM. To use this model to simulate 
the growth and reproduction of 0.2-micron 
Mycoplasma genitalium cells over a period 
of two hours would take the supercomputer 
Summit[7] one billion years. For more complex 
studies of thinking, memory, and behavior in 
the human brain, vastly more computing power 
would be needed. To predict the response of 
the human brain to a particular stimulus, it 
would take Summit 1024 years to simulate one 
hour of brain activity[8].

Turing Award winner Jim Gray divided scientific 
research into four paradigms: experimental, 
theoretical, computational simulations, and data-
intensive scientific discovery. As we continue 
with research in dynamically complex fields 
such as biology, material science, chemistry, 
and astronomy, it will be increasingly difficult to 
make progress relying on traditional computation 
methods. The curse of dimensionality may 
occur as the number of variables and degrees 
of freedom increase, and this means that the 
demand for computing power will increase 
exponentially. 

AI will provide a new solution to the curse of 
dimensionality and a new path for scientific 
research. Using conventional methods, it 
would take scientists several years to analyze 
the folding structure of a single protein, but 
with the help of AI, scientists are able to 
learn the 18,000 known protein structures 
and produce simulations with atomic levels 
of precision for unknown protein structures 
within just a few days. This kind of research 
is giving us new ways to discover therapies 
that could prevent and treat cancer, dementia, 
and other diseases caused by changes in the 
structure of proteins in cells. The winners 
of the 2020 Association for Computing 
Machinery (ACM) Gordon Bell Award[9] 
simulated a system of more than 100 million 
atoms using AI. The system was more than 
100 times larger than current models and 
the time-to-solution was 1,000 times faster. 
This project has brought accurate physical 
modeling to larger-size material simulation[10].

The scientific computing of the future will 
rely on a combination of data, computing, 
and intelligence, which will give rise to new 
paradigms for scientific research. AI will study 
existing knowledge, analyze, and draw new 
conclusions. Online iteration, combined with 
traditional modeling methods, will speed up 
scientific exploration and further expand people's 
cognitive boundaries.

Data-driven business innovation

Computing-enabled data value mining

Cloud computing and big data are now the 
foundation for digitalization in any industry. 
They are driving the digitization processes that 
are making many industries more efficient. A 
key feature of digitization is that it improves the 
matching of producers to consumers. Examples 
include e-commerce platforms and online-to-
offline (O2O) models.

10-fold increase in the demand for new 
services
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Full-stack, serverless device-edge-cloud 
computing will become a key technology for 
enterprises to modernize and go digital and 
intelligent. Programming languages, language 
runtime, as well as application scheduling, 
operations, and O&M based on the cloud-native 
computing model will be the foundation for 
building modern full-stack serverless software. 
This will allow all applications to be migrated 
to the cloud, and will result in tenfold gains in 
performance, efficiency, and cost reduction.

More efficient operations

More efficient resource utilization

The wide adoption of cloud allows companies to 
use computing resources more easily and quickly. 
New computing technologies will give companies 
access to these resources in smaller packages, 
available more quickly. This will reduce waste 
in the way companies use these resources. For 
example, before the cloud, central processing 
units (CPUs) were used only 10% of the time. 
Containerization raised this indicator up to 40% 
or higher. In the future, the wide adoption of new 
resource management technologies will reduce 
waste by 50% or more.

Software-defined operations
IT is now one of the core components of any 
operational system. Internet companies use 
a DevOps[11] model and are becoming more 
agile and efficient. By 2030, companies in the 
manufacturing sector will achieve highly efficient 
software-defined operations in their more 
complex value chains. 

The industrial Internet will connect the supply 
chain, manufacturing, maintenance, delivery, 
and customer service processes. All companies 
will form a value network that spans the globe. 
The digital transformation inside a company will 
expand into an improvement of entire industries, 
which will translate into greater synergies. And 
the dependence on data will change: from a 
company being highly dependent on its own data 

to being dependent on data from up and down 
the value chain, or even from other industries.

Companies of the future will use software 
to manage complex cross-organizational 
coordination and to define their own operations. 
For example, they can use technologies like 
robotic process automation, no-code/low-
code development, and AI-supported natural 
language programming to invoke the capabilities 
of robotic automation software, obtain required 
services, and orchestrate business processes. This 
will mean that even personnel without much 
expertise can improve processes and fix problems 
on their own. 

Low-carbon data centers
By 2030, data centers (DCs) will deliver a 100-
fold increase in computing power while achieving 
low-carbon operations, giving companies access 
to green computing resources.

New computing architectures will massively boost 
energy efficiency. In a conventional computing 
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process, more than 60% of the energy is used 
shuffling data. The data centers of the future 
will make computing tens of times more energy 
efficient. Analog computing such as quantum 
computing and analog optical computing will be 
important sources of computing power, driving 
energy efficiency indicators up exponentially.

In the push toward carbon neutrality, data 
centers will be positioned near energy resources 
and near areas with high computing demand. 
This will change the computing architecture on 
a larger geographic scale. Computing networks 
can balance the needs of green energy, latency, 
and costs and achieve optimal global power 
usage effectiveness (PUE) and cut carbon 
emissions. Tasks like AI model training or gene 
sequencing can be done in places with abundant 
green energy sources and low temperature while 
tasks like industrial control and VR/AR can be 
performed in places that are closer to customers' 
production environments.
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Computing 2030
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Cognitive intelligence

AI is evolving from perceptual intelligence to 
cognitive intelligence. Cognitive intelligence is 
an advanced stage of AI evolution, at which 
machines are given the capabilities of data 
understanding, knowledge representation, 
logical reasoning, and autonomous learning. It 
will make machines powerful tools for humans 
to become more capable and change the world. 
In the evolution toward cognitive intelligence, 
semantic and knowledge representation 
and logical reasoning are important means 
of cognition, and multimodal learning is an 
important way to realize information fusion 
and collaboration. By building large-scale 
multimodal basic models, AI systems can learn 
converged representation of multiple types of 
information to establish multimodal transfer 
and concordance. This improves an AI system's 
ability to perceive and understand complex 
environments, thereby enabling AI applications 
to work in different environments and on a wide 

range of different tasks.

Basic models for general intelligence
AI's ongoing evolution from perceptual 
intelligence to cognitive intelligence: AI has 
delivered computational intelligence and 
perceptual intelligence; it is now on the way 
to developing cognitive intelligence. Machines 
have strengths in computing speed and storage. 
Today, deep learning and big data analytics 
are enabling machines to perform certain tasks 
through vision, hearing, and touch, similar 
to how a human being would. Cognitive 
intelligence will allow machines to understand 
and reason like humans. When machines have 
these abilities, they will become powerful tools 
that help humans to understand and change the 
world.

Improving the ability of machines to generalize 
in the process of solving problems is an 
important evolutionary path from weak AI to 
strong AI. AI systems will be given the ability to 
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solve multiple different problems using large-
scale, domain-general basic models that can 
generalize from one situation to another; from 
one modality to another; and from one task to 
another.

Multimodal learning is an important approach 
to building basic models: In multimodal learning, 
data heterogeneity is the first problem that 
needs to be solved, which creates a number 
of challenges: (1) How can complementarity 
and redundancy in multimodal data be used 
for representation learning? (2) How can the 
strong and weak correlations between these 
representations be processed to produce 
relational vector maps between modalities? 
(3) During adaptive learning and multimodal 
transfer for model training, how can we keep 
model accuracy within an acceptable range 
when one piece or a type of data is missing 
in a certain modality? (4) During inference, 
when one piece or a type of data is missing in 
a certain modality, how should model topology 
and routing adapt for maximum inference gains?

Based on progress to date, we expect that 
multimodal models will become capable of 
multimodal, self-supervised learning and the 
transfer of generally-applicable knowledge. 
This means that tasks in different domains can 
be approached using the same multimodal 
framework.

Breakthroughs in multimodal learning will 
require advances in the following key areas: 

First, the technology to tag training data to 
associate captions, audio, video frames, etc. 
Second, multi-stream codecs from single-modal 
pre-training models to multimodal association 
coding, which enables multimodal learning with 
weak information association, with the decoder 
providing support for cross-modal transfer 
and generation. Third, self-supervised learning 
technology, involving semantic alignment and 
inter-modal predictions between text, speech, 
vision and other modalities. Fourth, technologies 
for downstream task fine-tuning that support 
multimodal semantic understanding and 
multimodal generation. Fifth, multimodal 
models that are smaller.

Automated, autonomous AI
Deep learning has not yet successfully 
developed beyond the stage of supervised 
learning. Data cleansing and tagging, and the 
design, development, training, and deployment 
of models, all require extensive manpower. 
Development in domains such as transfer 
learning, few-shot/zero-shot learning, self-
supervised/weakly-supervised/semi-supervised/
unsupervised learning, and active learning, 
will eventually drive AI to reach autonomy, 
eliminating our dependence on manual training, 
design, and iteration of models. AI autonomy 
will make models more homogenized, with the 
same model serving multiple purposes. The 
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amount of data learned will increase without 
manual intervention. Models will learn to pick 
up and train on new data as they operate, 
improving their capabilities in the process. The 
scaling of data and the prevalence of online 
learning will lead to more centralized model 
production. Industry applications in multiple 
domains will converge to a handful of or even a 
single ultra-large model.

However, there are still some major challenges 
that the developers of autonomous AI must 
overcome:

1) Training signals can be incorporated online 
in a self-supervised fashion, so that feedback is 
available during inference, not just during the 
training phase.

2) At present, a model's learned representations 
are formed without constraints. The 
representations that result from different 
training sessions may be radically different even 
if they are of the same model structure. Models 
need to overcome the problem of catastrophic 
forgetting, so that learning can be carried out 
continuously, and training and inference can 
converge into a single process.

3) Models manually designed for different tasks 
need to be replaced by models that can learn to 

encode for different tasks and switch between 
different modalities in context and on demand.

Brain-like intelligence
Current deep learning technology is largely 
data-driven and relies heavily on large 
quantities of labeled data and powerful 
computing. Backpropagation training algorithms 
need continuous enhancement in terms of 
model robustness, capacity to generalize, and 
interpretability. Drawing on and imitating 
the way biological neurons work, brain-
like intelligence creates digital neurons with 
richer functionality and promises to enable 
learning that is event-triggered, uses pulse 
encoding, and is coordinated both temporally 
and spatially. Using neurodynamic principles, 
brain-like computing can deliver both short-
term plasticity and long-term memory, and is 
capable of adaptive adjustment and learning 
in open environments. Inspired by the sparse 
connectivity and recursive form of the biological 
brain, no computation will be performed 
without pulses, which greatly reduces energy 
consumption. In the next five to ten years, 
if breakthroughs in related technologies are 
made, brain-like computing is likely to begin to 
outperform other models, as well as consuming 
less power, in many computing tasks, and 
be applied in smart devices, wearables, and 
autonomous vehicles.
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At present, brain-like systems are still inferior 
to the deep learning systems in terms of 
learning efficiency and computing accuracy, 
because our understanding of the human 
brain's learning mechanisms is too shallow. 
Research in this field will need to advance in 
two major areas. First, from the bottom up, the 
systems can simulate pulses in the biological 
brain, and use neuromorphic chips to recreate 
neurons and synapses at scale, which should 
support low power and low latency in time-
dependent applications. Second, from the 
top down, more comprehensive theories of 
neurodynamics and cognition are needed from 
a functional perspective, which can then be 
applied in combination with AI to achieve more 
robust and general intelligence.

Generative AI
Generative AI powers automated content 
production: It allows computers to abstract the 
underlying patterns related to a certain input 
(such as text, audio files, and images) and use 
it to generate expected content. Generative AI 
is used in identity protection, image restoration, 
audio synthesis, and antimicrobial peptide (AMP) 
drug research, among other fields.

Generative AI generates data that is similar to 
training data, rather than simply replicating 
it, so it can incorporate human creativity into 
processes of design and creation. For example, 
a game generation engine can generate 3D 
games to test the vision, control, route planning, 
and overall gaming capabilities of an intelligent 
agent, in order to accelerate the training of 
the agent. In the development of generative 
AI applications, the key objective is generation 
models that are capable of evolving and 
dynamically improving over time.

The field of generative AI is facing the following 
challenges:

1) Some generative models (such as generative 
adversarial networks, or GANs) are unstable, 
and it is difficult to control their behavior. 

For example, generated images may not be 
sufficiently accurate; they may not produce the 
desired output; and the cause cannot be located.

2) Current generative AI algorithms still require a 
large amount of training data and cannot create 
new things. To address this, algorithms capable 
of self-updating and evolving are needed.

3) Malicious actors can use generative AI for 
spoofing identities and can exploit vulnerabilities 
in AI tools to conduct remote attacks, resulting in 
serious threats to online information security such 
as data breaches, model tampering, and spam.

Knowledge computing
The industrial application of AI needs the ability 
to make high-quality decisions based on expert 
domain knowledge across multiple disciplines. 
A complete technical system is needed for 
knowledge extraction, modeling, management, 
and application. In the next decade, knowledge 
computing will make a leap forward: In 
knowledge extraction, the data source will not 
only include text and structured features, but 
also complex and multi-level knowledge, which 
includes several areas of research such as multi-
modal knowledge alignment, extraction and 
fusion, complex-task knowledge extraction, and 
cross-domain knowledge extraction.

Knowledge modeling will move from developing 
scenario-specific, atomized, automated, and 
large-scale knowledge graphs to integrating 
these scenario-specific graphs into general 
knowledge graphs. The applications of 
knowledge will develop, from simple query and 
predictions to high-order cognitive tasks such as 
causal reasoning, long-distance reasoning, and 
knowledge transfer.

The application of knowledge computing 
will require breakthroughs in algorithms for 
massive retrieval of sparse information, capture 
of dynamic-length knowledge, knowledge 
attention, and large-scale graph computing. The 
training schema for cognitive intelligence will 
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require advances in high-frequency knowledge 
retrieval during training and inference and 
feature enhancement based on knowledge 
combination. In terms of computing, it will 
be necessary to solve a number of problems 
such as training and inference for high-
frequency random retrieval, high-speed data 
communication, and some graph computing 
puzzles such as random walk and structural 
sampling. 

Intrinsic security

The migration of computing resources to the 
cloud has gone beyond traditional security 
boundaries. Traditional add-on security based on 
the division of trust and untrust zones cannot 
withstand new types of attack. In order to 
protect users in an evolving threat landscape, 
security must become intrinsic. Specifically, that 
means:

•	 Security must be an intrinsic capability 
of a system and a basic feature of chips, 
firmware, and software.

•	 Security should be ensured throughout the 
entire data processing lifecycle (including 
storage, computing, and transmission), to 
defend against all kinds of attack.

•	 A hardware-based root of trust is essential. 
Due to the system access control model, 
security functions must be implemented 
based on the highest hardware privilege in 
order to provide reliable security services on 
the operating system and applications. In 

addition, hardware acceleration can improve 
the performance of security services.

•	 The principle of open design should be 
adopted, which means the security of a 
mechanism should not depend on the 
secrecy of its design or implementation. 
Security services should be made open 
source. This way, service software can 
embed security into itself based on its 
own architecture pattern to ensure service 
security.

Digital trust and privacy
Data processing, in essence, is the process of 
computing data using algorithms. If all the 
three elements – computing power, data, and 
algorithms – are controlled by the data owner, 
data security and privacy are not really an 
issue. However, during cloud computing, these 
elements are often separate. Algorithms and 
computing power are provided by computing 
service providers, while users (i.e., data 
owners) need to upload data to the cloud for 
processing. Even if users trust the computing 
service providers, they don't trust the computing 
service provider administrators who have 
access privileges. Therefore, the major security 
challenge of cloud computing lies in protecting 
user data and privacy. To address this challenge, 
digital trust systems need to be rebuilt.

Governments worldwide have enacted data 
protection laws, providing a legal basis for 
rebuilding digital trust systems. Digital identity 
and privacy computing are key technologies in 
this rebuilding process. Digital identity is the 
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basis for establishing data as a property right, 
while privacy computing can be used for data 
analysis and processing without compromising 
data.

1) Hardware isolation technology that is based 
on trusted execution environments (TEEs) can 
be used to process sensitive data. However, the 
completeness of hardware security isolation 
mechanisms cannot be mathematically 
proven, so it may be hard for the mechanisms 
to prove their own innocence, and security 
vulnerabilities may exist. On the other hand, 
TEEs have a smaller impact on performance 
than cryptographic technology. In the future, 
privacy computing based on TEE technology will 
be widely adopted in public cloud, Internet, and 
major enterprise services. It's expected that TEE 
technology will be used in more than half of all 
computing scenarios by 2030.

 

2) Homomorphic encryption and secure multi-
party computation are considered to be the 
most ideal privacy computing technologies 
because it is possible to verify their security 
level mathematically. However, both of 
these technologies come with a significant 
performance cost (their processing is over 10,000 
times slower than conventional computing). 
Significant performance improvements must 
be made if these technologies are to be 
applied in real-world scenarios. Approximation 
algorithms are maturing, and homomorphic 
encryption and secure multi-party computation 
technologies have already been applied in face 
authentication, the sharing of health data, and 
other specific domains. In the future, further 

breakthroughs based on hardware will be made 
in these technologies, which are expected to 
be commercially used in scenarios that require 
high security, such as in finance, healthcare, and 
other security-conscious sectors.

3) Multi-party computation is built on the 
sharing of secret slices between multiple parties. 
Cryptographic methods like zero-knowledge 
proofs come with a high performance overhead. 
However, TEE technology can greatly improve 
the performance of multi-party computation, 
while being used to enable the sharing of secret 
slices between multiple parties. In addition to 
that, security can be proved mathematically 
based on TEEs. So this technology is expected to 
be used in various scenarios in the future.

AI security and trustworthiness
As AI applications become more popular, 
especially in fields like healthcare and 
autonomous vehicles, AI-related security 
challenges are increasing. AI models and 
training data are core assets of AI application 
providers. If not properly protected, they may be 
maliciously recovered and can be used to trace 
back to the data subjects. In addition, AI models 
are vulnerable themselves, resulting in more 
and more evasion and poisoning attacks on AI 
models. Attacks on AI models in key fields can 
have serious consequences. As concern about 
AI increases, there are challenges regarding 
AI ethics and forensics that will have to be 
overcome.

To address these challenges, all participants in 
the AI ecosystem must work together to ensure 
AI regulatory compliance and governance. They 
also need to adopt innovative technologies to 
trace the responsibilities of multiple participants, 
so as to support responsible AI.

1) Protection of AI models and training data: 
Encryption, mandatory access control, security 
isolation, and other mechanisms must be 
implemented to ensure security of AI models and 
training data throughout the data lifecycle, from 
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collection and training, to inference. The major 
challenge lies in encrypting the high-bandwidth 
memory data of neural network processing 
units (NPUs) in real time while ensuring no 
performance loss. In the future, breakthroughs 
need to be made in high-performance and low-
latency memory encryption algorithms and 
architecture design for a hardware memory 
encryption engine on NPUs to provide full-
lifecycle protection.

2) AI attack detection and defense: Adversarial 
sample detection models should be implemented 
to better identify physical and digital evasions 
and other attacks on AI models, block attack 
paths, and prevent misjudgment when AI 
models are attacked. The main challenge lies 
in continuous adversarial training against new 
types of attacks. In the future, independent 
security products and services to defend against 
AI attacks will emerge.

3) In addition to defense against known 
attacks, the security of an AI model itself must 
be enhanced to avoid the damage caused by 
unknown attacks. This can be achieved by 
enhancing model robustness, verifiability, and 
explainability.

Adversarial training is one of the key 
technologies for improving the security of 
AI models. Regularization of models and 
generalization of adversarial samples are 
key technologies that need to be improved. 
Adversarial robustness is expected to increase 

from current low levels to 80%.

Effective formal verification methods will be 
available to prove the security of small AI 
models. However, the formal verification of large 
models still faces huge challenges.

The ability of AI models to justify their decisions 
will be vital to minimizing legal or logical risks. 
Moving forward, an explainable model can be 
built through explainable data before modeling. 
Currently, linear models are basically explainable, 
but there are still huge challenges to be 
overcome in making non-linear ones explainable. 
It's still hard to make AI models explainable 
globally, which means that making some layers 
of network models visible and explainable may 
remain the most technically feasible approach 
for a long time to come.

4) AI models should also be continuously 
monitored and audited to comply with AI 
regulations, and blockchain and other related 
technologies can be used to ensure reliable audit 
results and real-time tracking of issues.

Security for new computing paradigms
In data-centric computing scenarios, computing 
power extends beyond CPUs, and in particular 
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computing power is moved to memory, using 
the processing in memory (PIM) technology. 
This causes the failure of traditional memory 
encryption mechanisms, making it impossible 
to deploy hardware-based privacy computing 
technologies. Even if data is encrypted at the 
application layer, data is still processed as 
plaintext, which means privileged users and 
processes cannot be prevented from data 
breaches. The only solution for this scenario is to 
deploy cryptography-based privacy computing 
technologies (e.g., homomorphic and multi-party 
computation) to build users' trust in computing 
service providers.

In data center scenarios where diversified 
computing power is provided, the migration to the 
cloud is blurring the boundaries of security, leaving 
traditional security approaches that were based on 
security boundaries out of date. That's where the 
Zero Trust Architecture [12] model comes into play. 
This architecture addresses the security challenges 
of untrusted environments by enhancing access 
policies, proactive monitoring, and encryption. 
The Zero Trust Architecture model and diversified 
computing power together plot out the path of 
security technologies for diversified computing.

1) Security + in-network computing architecture: 
The Zero Trust Architecture model erases the 
old boundaries of security, so it employs a finer-
grained access control mechanism to support 
dynamic authentication and resource access 
policies. That means software implementation 
consumes a large amount of CPU resources. 
However, an in-network computing architecture 
that uses hardware acceleration mechanisms for 
regular expressions can make policy execution 
10–15 times more efficient.

2) Security + diversified computing architecture: A 
Zero Trust architecture assumes that the network 
environment is untrusted. It requires encrypted 
communication throughout the network, including 
between compute nodes and data centers. 
Therefore, each xPU in a diversified computing 
architecture is required to implement the high-

performance hardware encryption engine that 
supports post-quantum encryption algorithms to 
withstand potential quantum attacks.

  

3) Security + data-centric peer-to-peer 
computing architecture: In a data-centric 
peer-to-peer computing architecture, high-
performance SCM will connect with the memory 
bus in the system. There are increasing risks of 
data and privacy leakage, as no mechanisms are 
in place to encrypt residual data in the memory 
after a power off. Ensuring data security in a 
data-centric peer-to-peer computing architecture 
will be a new challenge. For example, in a 
distributed cluster system where memory is 
shared across hundreds of compute nodes, it's 
challenging to protect data without greatly 
impacting bandwidth performance (keeping the 
impact close to a theoretical limit that is less 
than 3%).

4) DC-level dynamic measurement and proactive 
monitoring: Current computing platforms are 
generally unaware of the computing tasks 
running within systems. Even if the systems 
are attacked, the platforms cannot effectively 
distinguish malicious behaviors from normal 
computing tasks. In data centers, we are still 
facing many challenges in terms of detecting 
behavior of computing tasks in the system, so 
that they can measure system status proactively 
and monitor computing tasks, to detect and 
defend against potential malicious behaviors 
adaptively, thereby assuring computing power 
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security.

 

Green, integrated computing

Data centers currently account for about 1% of 
global electricity consumption. The total energy 
consumption of general computing has been 
doubling every three years. The push toward 
global carbon neutrality will drive a 100-fold 
increase in computing power while increasing 
energy efficiency. Ongoing improvements in chip 
packaging and chip architectures are increasing 
computing power density and energy efficiency. 
Co-packaged optics can reduce losses in high-
frequency data exchanges. All-in-one data 
centers will use AI to coordinate power supply, 
servers, and workloads to achieve an optimal 
PUE. The ultimate goal is to reduce the PUE to 
less than 1. Computing networks will connect 
distributed data centers that provide equivalent 
services while respecting differences in latency, 
cost, and green power use, achieving a globally 
optimal PUE and lowering carbon emissions.

All-in-one data centers

1) DC-level full-stack, converged architecture

Rapid development of compute-intensive 
technologies such as AI, supercomputing, and 
cloud computing will enable large data centers 
to accommodate millions of servers. This will 
create challenges such as end-to-end heat 
dissipation, hardware configuration and resource 
utilization, and unified O&M for millions of 
central nodes and massive numbers of edge 
devices.

All-in-one data centers will consume megawatts 
of power, so we will need to continuously 
increase their energy efficiency in order to 
deploy them at scale. Air conditioner-free and 
chiller-free data centers are now common and 
liquid cooling technologies are seeing wide 
adoption. Reuse of waste heat from liquid 
cooling for heating, secondary cooling, and 
power generation has become a new growth 
opportunity in the industry. New technologies 
are being improved and put into commercial 
use. As a result, the PUE of some data centers 
is approaching 1.0, and some are expected 
to achieve PUE below 1.0 in the foreseeable 
future. As chip manufacturing and packaging 
technologies continue to advance, the heat flux 
density of chips for compute-intensive tasks 
such as AI and high-performance computing will 
exceed 150 W/cm2, and may even go beyond 200 
W/cm2. Native liquid-cooled chips are emerging. 
With wider adoption of AI, we will see full-stack, 
automatic, coordinated optimization at the DC 
level, from power supply and cooling to chip 
working modes, based on service scheduling and 
workload features.

Power for data centers needs to be delivered on 
shorter and more efficient supply paths. New 
packaging technologies such as 2.5D, 3D, and 
wafer-level chip (WLC) will enable kiloampere-
level chip power supply, which will require 
new processes, components, and topologies. 
Power fluctuation due to overclocking and 
heavy, dynamic loads will require us to rethink 
server power supply design. Liquid cooling is 
more complex than air cooling, meaning more 
difficulty during the construction of equipment 
rooms, server production, installation, and O&M. 
It also demands higher skills in data center 
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personnel. Core components such as cold plates 
and coolants need to be improved in terms 
of processes and reliability if they are to be 
deployed at massive scale.

The temperature rises inside 3D chip packages 
are higher than existing packages. 3D packaging 
is responsible for nearly 50% of the temperature 
rise along the heat dissipation path. Therefore, 
3D packaging will present new heat dissipation 
challenges. The thermal resistance of thermal 
interface materials (TIMs) and cold plates will 
need to be reduced by 50%, and achieving this 
will require innovation in materials and processes. 
Large chip packages like WLC will also require 
advances in cold plate assembly, coplanarity, and 
reliability. One viable heat dissipation solution is 
integrating the chip packaging technology and 
the liquid cooling technology. With the TIM layer 
removed, the coolant comes in direct contact 
with the die inside the chip package. However, 
this will give rise to reliability issues such as 
long-term erosion and corrosion, and challenges 
related to heat dissipation on the surface of the 
die, jet uniformity, and package sealing.

Waste heat can be reused much more efficiently 
when water temperatures are high, but for 
efficient cooling and high chip performance, 
coolant water temperature must not be too high 
(not higher than 65°C). Low water temperature 
presents challenges for data center heat 
reuse systems. Waste heat reuse in secondary 
cooling is expected to be in large-scale use by 
2025. However, the current efficiency of power 
generation from waste heat is less than 5%. 
Large-scale adoption will require breakthroughs 
in key technologies, such as new power 
generation materials with high ZT values. In 

addition, stable heat sources are required for 
waste heat reuse. The temperature of the liquid-
cooled return water depends on chip workloads. 
Therefore, service scheduling, workload control, 
and coolant flow control will be needed to help 
provide stable heat sources for the waste heat 
reuse system.

Data center-level full-stack energy efficiency 
optimization will require open interfaces to 
monitor and control cooling towers, water 
pumps, coolant distribution units (CDUs), 
uninterruptible power supply (UPS), electricity 
meters, and servers. Developing the specifications 
of these interfaces will be another challenge.

Flexible hardware configuration: As service types 
and processor platforms become increasingly 
diversified, IT resources in cloud computing 
and 100 EFLOPS supercomputing data centers 
will see a dramatic rise in both scale and 
complexity. There will be a gradual evolution 
from the current server-based delivery model to 
a component-based one. As a result, resource 
utilization will increase from the current 30% 
to 70%. To support automated O&M and 
component-based supply, specifications must 
be developed for hardware form factors and 
software and hardware interfaces.

Automated, intelligent equipment O&M: With 
millions of servers deployed in data centers, 
automation can improve the efficiency and 
accuracy of construction and O&M by orders 
of magnitude. Large numbers of nodes are 
being deployed at the edge, and automating 
their integration will spare us corresponding 
increases in labor and operation costs that edge 
deployment would otherwise bring. Automation 
will also improve our ability to troubleshoot 
edge systems. AI and big data will help make 
better informed decisions; learning algorithms 
and dynamic adjustment of hardware and 
software configurations will increase IT resource 
efficiency and energy efficiency. Incidents like 
the COVID-19 pandemic will require data centers 
to support contactless delivery and O&M. 
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As Industry 4.0 and AI continue to develop, 
automation technologies are rapidly maturing. 
Intelligent and unmanned adaptive data 
centers (ADCs) will be deployed widely, making 
automatic and dynamic matching between data 
centers and service workloads a reality.

Computing networks
1) Cross-region distributed super data centers

The central idea of a computing network is 
to use new network technologies to connect 
computing center nodes distributed across 
different geographical locations. The purpose 
of such a network is to achieve real-time 
awareness of the status of computing resources, 
to coordinate the allocation and scheduling of 
computing tasks, and to transmit data, so that 
the system as a whole forms a comprehensive 
network that senses, allocates, and schedules 
computing resources across the board. Through 
this network, computing power, data, and 
applications will be aggregated and shared. 

Computing centers have multiple layers and 
management domains. Different computing 
centers differ greatly. The types of applications 
deployed, datasets stored, and computing 
architectures may vary from site to site. 
Management policies, billing standards, and 
carbon emissions standards may also vary. If 
we are to build computing networks, there are 
several things that need to be sorted out first: 
coordination between different computing 
centers; a trusted transaction and management 

mechanism for computing power, data, and 
applications; and unified standards. The ultimate 
goal is to build computing architecture that is 
open, energy efficient, and delivers high resource 
utilization.

2) Converged applications will form a digital 
continuum

Hyperscale AI models, the explosive growth in the 
volume of data, and the increasing requirements 
for precision and speed in scientific computing 
will require massive computing power and new 
applications. The distributed applications of the 
future will integrate real-time and non-real-time 
data processing, model training and inference, 
simulation and modeling, IoT, and information 
physics to form a "digital continuum". This will 
solve the problems that individual computing 
centers find hard to solve. For example, a digital 
meteorological model, which combines neural 
networks and real-time data, can provide short-
term and imminent weather forecasts at high 
frequency and high resolution, bringing tangible 
benefits to our everyday lives. Distributed large-
scale models can use the resources of multiple 
computing centers to speed up model training. 
New applications will support the connectivity 
between different computing centers and 
between computing centers and edge computing 
facilities. Computing centers will no longer be 
independent systems; instead, each center will be 
a node in an interconnected computing network. 
In order to meet the computing and data 
processing requirements of complex applications, 
users from multiple organizations can share 
computing power and data distributed across 
multiple computing centers.

3) Collaborative scheduling for cross-domain 
computing centers

Multiple computing centers distributed 
at different geographical locations will be 
connected to support new distributed converged 
applications. Training hyperscale models will 
require the resources of multiple computing 
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centers, and complex converged applications 
may also rely on the computing power and 
datasets of different computing centers. 
Application diversity, resource heterogeneity, 
and inconsistent management strategies will all 
pose new challenges to the scheduling system. 
The scheduling system needs to be aware of the 
computing power and storage resources required 
by applications; it will need to know the locations 
of data, to reduce data movement overheads; 
and it will need to understand how applications 
communicate to reduce communication 
overheads. The scheduling system also needs to 
be aware of the availability and heterogeneity 
of resources in different computing centers in 
real time, and the network status of different 
computing centers. In addition, the system needs 
to make the optimal decisions while taking into 
account the required cost-effectiveness and 
energy efficiency, in order to adapt to differences 
in resource pricing and carbon emission 
standards that apply to different computing 
centers. That is, the scheduling system must be 
capable of discovering resources, aware of the 
characteristics of applications, aware of software 
and hardware heterogeneity at computing 
centers, and aware of local management policies. 
This will make it possible for the scheduling 
system to deliver globally optimal efficiency in 
computing, data movement, and energy use.

Chip engineering
1) 2.5D chiplet packaging and integration 
technology will continue to improve chip 
computing power and product competitiveness

The hard dimensional limits on wafer exposure 
(25 mm x 32 mm for one reticle) present huge 
technical barriers to increasing total die size 
and die yield. This issue is impeding efforts to 
improve chip performance and cut chip costs.

2.5D silicon/fan-out (FO) interposer + chiplet 
technology can increase die yield and reduce 
chip costs. Stacking and integration help achieve 
greater chip performance, and provide better 
adaptability to different product specifications. In 

addition, the energy consumption per bit in 2.5D 
packaging is just half that of the board-level 
interconnection solution used in conventional 
packaging.

As the industry continues to advance and the 
demand for chips grows, it is estimated that by 
2025, the size of a 2.5D silicon/FO interposer 
will be more than four times that of a reticle, 
and the substrate is expected to be larger than 
110 mm x 110 mm. Larger 2.5D and substrate 
processes pose engineering challenges in terms 
of yield, lead time, and reliability. To address 
these challenges, converged, innovative substrate 
architectures will be needed.

2) 3D chip technology is expected to 
outperform conventional architectures by 
dozens of times

3D chip technologies present significant 
advantages over advanced 2D/2.5D packaging 
and heterogeneous integration: better 
interconnection density, bandwidth, chip size, 
power consumption, and overall performance. 
3D chip technologies will be critical to chip and 
system integration in key scenarios such as high-
performance computing and AI. 

3D chip technology will evolve from die-to-
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wafer (D2W) to wafer-to-wafer (W2W) and 
μbumps, and then to hybrid bonding, and finally 
to monolithic 3D technology. This technology 
will be widely used in different types of stacking, 
including 3D memory on logic, logic on logic, 
and optical on logic, and will gradually extend to 
multi-layer heterogeneous stacking.

3D chip stacking requires the use of ultra-
high-density bonding technology with pitches 
smaller than 10 μm. 3D chips have significant 
advantages over 2.5D packaging in terms of 
bandwidth and power consumption, so power 
consumption per bit is expected to fall by 90%. 
Ongoing research is required into technologies 
for working with smaller through-silicon vias 
(TSVs), both in materials and processes. One 
drawback of 3D stacking is that it multiplies 
local power density and current density, with 
implications for the system's power supply and 
heat dissipation paths.

3) Co-packaged optics for Tbit/s-level high-
bandwidth ports 

Compute-intensive chips (e.g. xPUs, switches, 
and FPGAs) will deliver increasingly higher I/
O bandwidth. It is expected that the port rate 
will reach terabits per second or higher by 
2030. As the speed per channel increases, serial 

communications at speeds of 100/200 Gbit/
s or higher will create challenges in power 
consumption, crosstalk, and heat dissipation. 
Conventional optical-to-electrical conversion 
interfaces will no longer meet the demands 
of increasing computing power. Co-packaged 
optics are expected to cut end-to-end power 
consumption by 2/3. Co-packaged optics can 
replace pluggable optics and on-board optics, 
and will become a key technology for higher 
port bandwidth. If the technology is to be widely 
adopted, challenges in engineering technologies 
will need to be addressed, including 3D 
packaging of photonic integrated chips (PICs) 
and electronic integrated chips (EICs), ultra-large 
substrate and optical engine (OE) integration, 
and chip power density.

4) Power supply for power-intensive chips

The demand for increasing computing power 
and the development of chiplet technology 
continue to drive up chip power consumption. 
The power supply for kW-level chips will no 
longer be a problem, but more innovative 
and efficient power supply strategies will be 
required for 10kW-level wafer-level chips. New 
power supply architectures such as high-voltage 
single-stage conversion and switched-capacitor 
hybrid conversion, combined with engineering 
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technologies such as low-voltage gallium 
nitride (GaN) power devices and high-frequency 
integrated magnets, can further improve the 
end-to-end energy efficiency and power density 
of board power supply.

High-voltage (48V) direct power supply is key to 
addressing the problem of chip power supply. To 
implement this technology, it will be necessary 
to first develop new materials for substrates and 
packaging, along with the processes necessary 
to apply them, which can accommodate the high 
voltages. Efficient on-chip voltage conversion 
and core-based power supply are the way 
forward for research. 

5）Chip-level heat dissipation technology

The power consumption of computing chips has 
risen sharply, and heat dissipation has become 
a major barrier to further chip performance 
improvement. There is an urgent need for new 
heat dissipation technologies and materials. 
Lidless chips, advanced package- and chip-
level liquid cooling, and high-conductivity TIM1 
materials that reduce path thermal resistance 
are expected to provide the heat dissipation 
capacity necessary for kW-level chips, and even 
10 kW-level chips. They will open the way for 
major advances in chip performance. Dynamic 
chip thermal management and system-level 
coordinated heat dissipation will also be key 
technologies for ultra-power-intensive chips.

Diversified computing

In the future, data will be processed in the right 
place, using the right kind of computing. For 
example, network data will be processed on data 
processing units (DPUs) and neural network 
models will be trained on NPUs. Computing 
power will be everywhere. Peripherals such as 
hard disks, network adapters, and memory will 
gradually become capable of data analysis and 
processing. Converged applications call for a 
unified architecture for diversified computing. 
Currently, tools from different vendors are 

siloed from each other, greatly hindering the 
development of diversified computing.

Data-centric computing
1) Symmetric computing architecture (in-
memory data processing)

In Von Neumann architecture, data needs to be 
moved from storage to the CPU for processing, 
and this movement of data consumes a large 
amount of computing power and energy in the 
system. In addition, numerous memory, storage, 
and transport formats need to be converted 
back and forth during data processing and 
exchange, which consumes a lot of CPU time 
and leads to low energy efficiency. At the same 
time, data volumes are mushrooming, and 
hardware deployment cannot keep pace. This 
will exacerbate existing issues related to input/
output (I/O), computing power, and networks. 
Such issues slow down data migration, hinder 
processing efficiency, and affect a system's 
overall energy efficiency.

These issues can be properly addressed with a 
symmetric computing architecture that supports 
memory pooling. Under this architecture, unified 
memory semantics will be used to process and 
exchange data throughout the data lifecycle, 
and even ensure that all data is processed in 
the memory. This architecture can eliminate 
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the need for format conversions, improve data 
migration speeds, expand the memory available 
for applications, and ultimately enhance the entire 
system's data processing capability. This will be 
one of the major approaches to faster computing. 
Building this architecture will require breakthroughs 
in multi-level memory architecture, large-capacity 
non-volatile memory, and other key technologies.

2) Ubiquitous computing (intelligent 
peripherals)

In the future, a diverse range of xPUs will 
provide different types of computing power. In 
addition, we believe that an architecture with 
ubiquitous near-data computing will be a way 
forward. Under this architecture, data will be 
processed in the right place with the right kind 
of computing power, which will help reduce data 
migration and boost overall system performance.

Ubiquitous near-data computing may involve 
the following directions:

(1) Near-memory computing. In current systems, 
the effective bandwidth available for data 
migration is limited by the bandwidth of the 
external bus. In the future, multiple concurrent 
programmable computing units will be added 
to the dynamic random access memory (DRAM) 
control circuit, and the DRAM array structure 

will be optimized to improve concurrent 
internal data access. This will multiply effective 
bandwidth for data computing in the DRAM, 
and help overcome the bandwidth bottleneck 
caused by the memory wall.

(2) Near-storage computing. Currently, a fixed 
data acceleration unit (such as a compression 
engine) can be added to a solid state drive 
(SSD) controller specifically to process data. 
In the future, multiple operator engines in the 
SSD controller could be invoked on demand 
through application programming interfaces 
(APIs). Coupled with compilers, this approach 
can support more flexible offloading of compute 
workloads, and improve the energy efficiency of 
data computations in general scenarios.

(3)  Computing using memory based on 
SmartNIC, which will evolve to a DPU-based, 
data-centric computing architecture. In the 
future, in-network computing power will be 
flexible and programmable, existing within open, 
heterogeneous programming frameworks, for a 
service-driven in-network computing paradigm. 
This will support acceleration across the board, 
including storage, security, and virtualization, 
and will greatly improve the performance of 
distributed applications, such as HPC and AI 
convergence, big data, and databases. Fine-
grained dynamic scheduling and efficient 
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interaction of all computing resources in data 
centers will become possible.

3) Computing using memory

 Computing using memory is a tight coupling 
between processing and storage units, which 
allows storage media to function as both a 
storage unit and processing unit. This erases the 
boundary between computing power and storage, 
effectively overcoming the power wall and the 
memory wall. This technology is expected to 
be at least 10 times more energy efficient than 
traditional Von Neumann architecture.

Computing using memory based on mature 
memory technologies like static random-access 
memory (SRAM) and NOR flash is expected to 
be in commercial use on a large scale within 
two to three years. This technology will make 
AI inference and operation on devices and the 
edge 10 times more energy efficient. Computing 
using memory, powered by new non-volatile 
memories like resistive random-access memory 
(ReRAM), phase change memory (PCM), and 
magnetoresistive random-access memory 
(MRAM), is still in the experimental phase, but 
given their high performance and low energy 
consumption, they have the potential to be used 
in data centers in the next decade.

Breakthroughs in the following areas will also be 
required before computing using memory can 
become commercially available on a large scale.

Computational precision: Computational noise 
and issues of component consistency and stability 
can cause computational errors, so computing 
using memory is less precise than conventional 
computing systems. Therefore, algorithms will 
need to be optimized to account for the kind of 
compute circuit on which they are running.

Software ecosystem: Computing using memory 
is a type of data-driven computing. Neural 
network models need to be deployed on the 
right storage units, and the entire computational 

process will be controlled through data flow 
scheduling. This necessitates the development of 
more intelligent, efficient, and convenient data 
mapping tools.

System architecture: Computing using memory, 
powered by new non-volatile memory, uses a 
calculation method that multiplies matrices by 
vectors. Today, these systems are often used in 
specific machine learning applications (e.g., neural 
network inference and training), and it is difficult 
to extend them to other use cases. In addition, they 
cannot cooperate with existing storage systems 
to efficiently process data. To overcome these 
challenges, a full-stack design that facilitates synergy 
between storage devices, programming models, 
system architecture, and applications will be essential 
to ensure that the architecture of computing using 
memory works for general purposes.

4) Buses: From board-level buses to DC-level 
buses

With the exponential growth of computing power 
and data, large, centralized data centers that 
focus on AI, HPC, and big data will become more 
important. Compared with intra-node buses, 
the networks connecting entire data centers 
has a huge latency, bandwidth gap, and heavy 
network software stack overheads. All of these 
features degrade computing power. Lightweight 
software stacks, with high bandwidth, low 
latency, and memory semantics, exist at the 
board level, and will be extended to the entire 
data center through the memory-semantic bus. 
This will enable optimal performance and energy 
efficiency for the entire data center.

For memory-semantic buses, the biggest 
challenge lies in building open, equal, 
interoperable buses, interfaces, and protocol 
standards. This helps prevent the fragmentation 
of standards for computing system buses, which 
would only hinder advances in computing 
performance and large-scale computing.

Application-driven diversified computing
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The next generation of computing systems will 
bring a new paradigm, characterized by domain-
specific hardware, domain-specific programming 
languages, open architectures, and native 
security architectures.

1) New paradigm for scientific computing

With breakthroughs in AI computing methods 
and AI computing architectures, a new paradigm 
is emerging in scientific research, in which 
machine learning is combined with first-
principles-based physical modeling. In the next 
decade, intelligent scientific computing will be 
involved in every aspect of scientific research 
and technological innovation. The effort to 
efficiently integrate AI algorithms with scientific 
computing presents unprecedented challenges 
and opportunities.

•	 In terms of the fundamentals, there are 
challenges regarding the computational 
frameworks and mathematical methods of 
the new computation approach. There is a 
need for new frameworks and approaches 
that ensure a given problem can be 
effectively solved using AI. That is, the 
mathematical methods and frameworks 
must ensure computability, learnability, 
and interpretability. Therefore, over the 
next decade, hardware and software 
infrastructure must be built based on 
mathematics and AI research and provide 

appropriate implementation, assessment, 
and testing systems.

•	 In terms of data, a large number of different 
data sources are required to boost scientific 
research, engineering, and manufacturing 
using AI. First, different fields of scientific 
research rely on different sources for their 
data. These data sources may include 
instruments, simulations, sensor networks, 
satellites, scientific literature, and research 
findings. Currently, there are still great 
challenges to overcome regarding the 
availability and shareability of this data. 
Second, there are challenges in using AI 
to generate effective data that is based 
on physical principles and complies with 
basic laws of physics (such as symmetry 
and conservation laws). To address these 
challenges, scientists from different domains, 
AI experts, mathematicians, and computer 
scientists need to work together.

2) AI enabling intelligent storage

Storage systems are now expected to address 
loads of increasingly diverse and complex service 
requirements and to offer simplified system 
management and O&M.

Storage systems of the future will be able to 
use AI to proactively manage and respond 
to their internal and external environments, 



Computing 2030

33

to learn continuously, to be workload-aware 
and adaptive, and to automatically optimize 
themselves to deliver gains in resource allocation, 
cost, performance, reliability, usability, etc. In 
addition, manual O&M will need to evolve to 
automated intelligent O&M using AI.

Progress has already been made in the 
application of AI in indexing, automatic 
optimization, and resource allocation in storage 
systems. However, breakthroughs in the following 
four areas are still needed:

•	 Workloads: The impact of I/O workloads on 
system performance needs to be modeled 
to identify the key indicators and factors 
affecting module performance, to accurately 
assess system performance, and to simulate 
real-world service scenarios.

•	 Data: Data distribution, data lifecycle, 
and data context need to be perceived 
so that systems can improve data access 
performance, reduce the consumption of 
resources by back-end garbage collection, 
and improve data reduction ratios.

•	 Systems: Rules and patterns need to be 
identified based on past data, computing 
tasks need to be arranged and scheduled 
efficiently, and systems need to be 
optimized during runtime to improve system 
parameters and resource allocation, reduce 
system power consumption, and ensure 
that fluctuations in system performance are 
controllable and do not undermine reliability.

•	 Operations: Automated O&M is needed 
to eliminate the need for manual work; 
faults need to be automatically analyzed 
to identify root cause; and any system 
suboptimality needs to be detected, 
prevented, and rectified automatically.

Integrating top-down load modeling and bottom-
up adaptive learning to support intelligent 
storage has become an area of interest. A great 

deal of current research is aimed at developing 
intelligent storage systems featuring automatic 
performance optimization, automatic QoS 
control, intelligent data awareness, self-learning 
of rules and policies, intelligent scheduling, 
low-power controls, simplified planning and 
configuration, prediction of system issues, and 
automatic root cause analysis.

Multi-dimensional 
collaboration
Computing and storage infrastructure are 
distributed in different locations on the cloud, 
edge, and devices. Such infrastructure can 
be horizontally and vertically coordinated 
to complement each other and enable cubic 
computing. This addresses problems such as 
poor service experience, uneven distribution 
of computing, low utilization of computing 
resources, and information silos.

Multi-dimensional sensing and data modeling 
enable the physical world to be mirrored, 
computed, and enhanced to form digital twins. 
With light field holographic rendering and AI-
assisted content generation, the digital world is 
precisely mapped to the physical world. Multi-
dimensional collaboration between time and 
space, as well as between virtuality and reality, 
enables seamless integration of the physical and 
digital world.

Cubic computing
1) Edge computing
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The world of the future will be an intelligent 
one in which everything is connected. As 
5G technologies mature and see increased 
application, edge computing will be widely 
deployed in the ICT industry. It is expected that 
the global edge computing market will be worth 
hundreds of billions of US dollars by 2030, but at 
present the value of this market is US$10 billion. 
To apply edge computing on a large scale, we 
must first confront challenges in areas like edge 
intelligence, edge computing network, edge 
security, edge standards, and open ecosystems.

Edge intelligence: Intelligent upgrades of 
vertical industries like manufacturing, power 
grids, city administration, transportation, and 
finance are important drivers of the exponential 
growth of edge computing. Development kits 
for basic AI capabilities, such as incremental 
learning, transfer learning, device optimized 
model compression, and inference scheduling 
and deployment, are needed to solve common 
issues encountered by many industries currently 
undergoing intelligent transformation. A 
development kit is needed to address common 
issues unique to intelligent manufacturing. 
This industry is characterized by samples or 
images with complex backgrounds and low 
contrast, small size training samples, and weak 
supervision. Development kits should also 
be developed for other industries, to form a 
comprehensive set of software development kits 
(SDKs) for application enablement.

Edge computing network: Future service 
demands will drive edge devices to support 
a greater range of services. As such, these 
devices will need to be mobile, low-power, and 
smaller, but computing, storage, bandwidth, and 
latency will become bottlenecks. Holographic 
and multi-dimensional sensing services require 
100 times more computing power than is 
currently available, storage capacity will need 
to expand by 100 or even 1,000 times, and 
network bandwidth will need to increase to 
tens of terabits per second. Industries such as 
intelligent manufacturing, intelligent power 

grids, and intelligent transportation require 
millisecond-level deterministic latency. To meet 
the demands of edge acceleration, offloading, 
and performance breakthroughs, we need 
hyper convergence of computing, storage, and 
networking, with efficient use of diversified 
computing. This will pose new challenges to 
edge software and hardware architecture.

Edge security: Edge devices are physically 
closer to attackers. Being located in complex 
environments, edge devices are more vulnerable 
to attacks from physical hardware interfaces, 
southbound and northbound service interfaces, 
and northbound management interfaces. Data 
is often a core asset of users, so data loss or 
theft may cause significant losses to users. It is 
estimated that 80% of data will be processed 
at the edge by 2030. It is thus paramount to 
strengthen security and privacy protection 
during data collection, storage, processing, 
and transmission at the edge. In addition, the 
security and privacy of core assets such as 
edge applications and models must be strictly 
protected. Data silos caused by data privacy 
protection must be prevented as this would 
make it difficult to fully unleash the potential 
value of data and AI algorithms in sectors such 
as healthcare, finance, and industry.

Edge standards and open ecosystems: Edge 
devices for different industry applications differ 
greatly in computing power, functions, software 
and hardware formats, and interfaces. Proprietary 
software and hardware solutions and interface 
protocols from different vendors are often not 
interoperable, which greatly hinders the adoption 
of edge computing. The edge computing system, 
software and hardware frameworks, and related 
interfaces and protocols need to be standardized, 
and corresponding test and acceptance standards 
need to be established for better interoperability 
between edge devices, software, and protocols. 
In addition, open ecosystems need to be built for 
each industry to attract investment from more 
vendors and partners.
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2) Multi-device collaboration

Animals like ants and bees create swarm 
intelligence through collaboration. The multi-
device collaboration technology aims to achieve 
similar breakthroughs to improve the problem-
solving capabilities, overall performance, and 
robustness of multi-device systems.

Multi-device collaboration takes various forms, 
such as task sharing, result sharing and intelligent 
agents. In task sharing, devices collaborate by 
performing subtasks of a particular task. In result 
sharing, devices collaborate by sharing parts of 
the results. The processing capability of each 
device at any given moment depends on the data 
and knowledge that the device owns or receives 
from other devices. In the form of intelligent 
agents, devices collaborate on the basis of 
independence and autonomy.

Effective multi-device collaboration requires 
solving problems related to cooperation and 
conflict resolution, global optimization, and 
interaction and collaboration consistency.

Cooperation and conflict resolution: A deadlock 
or livelock may occur during multi-device 

collaboration. Deadlocks make devices unable to 
perform their respective next-steps, and livelocks 
make devices work continuously without making 
any progress. Coordination mechanisms and 
algorithms are critical for preventing deadlocks 
and livelocks in interactive processes.

Global optimization: It is difficult to achieve 
global optimization when multiple devices 
are collaborating based on local information. 
However, collaboration based on a global view 
often means large communication traffic, which 
can overburden the system. Efficient and secure 
acquisition of high quality and reliable global 
situation estimations determines the efficiency 
and effectiveness of multi-device collaboration.

Interaction and collaboration consistency: Each 
device obtains information from other devices 
through network communication and adjusts its 
own state. In practice, because the connectivity 
between multiple devices is unreliable or there 
are barriers to communication, collaboration 
consistency issues may arise. Therefore, the ability 
to address such issues determines the robustness 
of a multi-device collaboration system.

Multi-device collaboration systems will gradually 
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evolve from simple cooperation and connection 
to autonomous swarm intelligence.

3) Device-edge-cloud computing

AI and emerging data-intensive applications, 
such as intelligent manufacturing, intelligent 
cities, smart inspection, and intelligent 
transportation, are developing rapidly. The need 
to improve application experience, such as by 
reducing latency, reducing bandwidth costs, and 
enhancing data privacy protection, drives the 
development of device-edge-cloud computing. 
To develop an integrated computing architecture, 
the following challenges need to be addressed.

Task collaboration: How should a computing 
task be divided into multiple subtasks? How 
should subtasks be deployed and scheduled on 
the device, edge, and cloud? Where should a 
subtask be performed (on the device, edge, or 
cloud) and when? The migration of computing 
subtasks across clouds, clusters, and nodes is 
also a challenge.

Intelligent collaboration: The model of training 
on the cloud and inference at the edge is moving 
toward device-edge-cloud collaborative training 

and inference. Challenges in the following areas 
need to be addressed to achieve device-edge-
cloud synergy: precision and rate of convergence 
of collaborative training; latency and accuracy of 
collaborative inference; and data silos, small sample 
sizes, data heterogeneity, security and privacy, 
communication cost, and limited device/edge 
resources.

Data collaboration: Data is the basis of 
intelligence. Diversification and heterogeneity 
pose challenges for data access, aggregation, 
interaction, and processing.

Network collaboration: As the scale of the 
device-edge-cloud computing network grows, 
access by a large number of devices and subnets 
brings great challenges to device, network, 
and service management. We need solutions 
for the challenge of ensuring reliable real-time 
connectivity.

Security and trustworthiness: How can security 
and privacy be ensured when edge devices and 
their data are connected to the cloud? How can 
the cloud protect itself from edge-side attacks? 
How can the data sent from the cloud to the 
edge be protected?
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Digital twin

1) A unified digital twin platform is the way 
forward

Under the digital tide of various industries, such 
as smart factories, smart cities, and virtual social 
media, there is no unified platform for creating 
personalized digital twin systems. This platform 
needs to focus on the unification of data formats 
and development tools of 3D models, and provide 
diversified computing power and storage space 
required for modeling large amounts of data.

2) Multi-dimensional sensing and digital 
modeling technology

The physical world of the future will have 
a digital twin. These two worlds will be 
seamlessly converged and work in tandem 
to improve the efficiency of product design, 
product manufacturing, medical analysis, 
and engineering construction. The process of 
mapping the physical world to its digital twin 
will face numerous challenges, such as multi-
dimensional sensing, 3D modeling, and light 
field data collection and storage.

Multi-dimensional sensing: Massive amounts of 
data on the physical world, including images, 
videos, sounds, and temperature, humidity, and 
mechanical records are collected and stored. 
The acquisition, processing, and convergence 
of data with more dimensions requires high-
resolution sensing, object location, imaging, and 

environment reconstruction, and the amount of 
data generated in this process is even larger. The 
process of screening, preprocessing, modeling, 
and simulation of such massive amounts of 
data relies on powerful computing and the 
deep integration of multiple disciplines, such as 
artificial intelligence, cognitive science, control 
science, and materials science.

3D modeling will require 100 times more 
computing power. 3D modeling, which is based 
on images and video streams of different 
angles and massive amounts of data collected 
by array cameras and depth cameras, requires 
huge computing power. The volume of high-
precision data collected by a 100 plus-channel 
camera array is 100 times higher than that 
of 2D images. The resolution will increase to 
8K and the required computing power per 
channel will see a 4-fold increase. The required 
computing power for modeling is 100 times 
higher. Managing this massive amount of multi-
dimensional data and transforming it into a 
3D model is a big challenge. In addition, in 
the consumer market, depth information of 
images can be obtained using the 3D camera 
on a phone, and medium- and low-precision 
modeling based on the depth information can 
be performed on the phone. The 3D camera of a 
phone is usually a binocular camera, structured 
light camera, or time-of-flight (ToF) camera. A 
unified, efficient, and economical software and 
hardware system for 3D modeling is required 
for high-level and consumer-level modeling, the 
digital transformation of various industries, and 
the flourishing of the digital twin industry.

AI-enabled material generation in digital 
modeling: Powered by AI image recognition 
technology, intelligent generative algorithms, and 
strong AI computing power, digital models can 
automatically recognize the physical properties 
of images, such as metalness, roughness, 
reflectivity, refractivity, and surface normal vector. 
This would then generate materials like we see 
in the real world in the form of a 3D model. To 
support this process, a unified and open material 
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description language is needed to exchange 3D 
graphic data between different industries.

100 times more light field data will make 
compression a key technology: Light field 
camera arrays will collect 100 times more image 
and video stream data, which will then be used 
for synthesizing 3D video streams and light 
shading in rendering. Such massive amounts 
of data mean that data storage and processing 
will be a huge challenge. Breakthroughs in fast 
compression and storage of light field data 
are therefore essential, as these are the key to 
subsequent rendering and imaging.

3) Light field holographic rendering 
technology

Breakthroughs in visual and interactive 
technologies need to be made for a digital twin 
display system to provide users with the same 
experience as they have in the physical world. 
Most products currently on the market have 
deficiencies in rendering quality, fidelity, and 
rendering delay. Real-time ray tracing and zero-
delay transmission can directly improve user 
experience and are key technologies for photo-
realistic authentic rendering. Advanced rendering 
such as ray tracing requires 10 times more 
computing power than traditional rendering. 
Utilizing storage to replace computing can meet 
part of the demand for computing power while 
reducing latency, but this would necessitate 
greater storage space. Moving forward, cloud-
based holographic rendering of light fields will 
be an important area of research.

Advanced rendering technology will deliver a 
64-fold increase in resolution: The mainstream 
technology of holographic rendering of light 
fields has evolved from rasterization rendering 
to much more advanced rendering technologies 
such as ray tracing. In scenarios such as gaming 
and extended reality (XR), a near-real experience 
can be made possible with 16K binocular 
resolution, 120 frames per second, and a latency 
of no more than 8 ms. Strong interaction 
services use 64 times more computing power 
and require a latency of 5 ms. These services 
need breakthroughs in key technologies such 
as 3D modeling, material generation, and ray 
storage. Device-edge-cloud computing clusters 
can provide converged computing power for 
rendering, AI, and video streaming. When these 
compute resources are combined with content 
creation software for advanced rendering, near 
real-time and high-performance rendering 
solutions can be created.

AI-based content generation: AI can enable 
3D modeling, automatic material generation, 
super resolution, and noise reduction. AI 
technologies such as generative adversarial 
network (GAN), natural language processing 
(NLP), and natural language generation (NLG) 
will generate 3D images of avatars and allow 
them to have vivid expressions and engage in 
natural language conversations. This will greatly 
aid communication between people in different 
parts of the world. AI content generation will 
also be used in industrial design, XR content 
creation, and special visual effects. 

4) Interaction between the physical and 
digital worlds for hundreds of millions of 
users

Allowing hundreds of millions of users in the 
physical world to interact with digital twins 
places high demands on computing, storage, 
and network bandwidth. This is because it 
requires a large amount of state queries and 
message transmission. When people and things 
can interact with each other at latencies less 
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than 5–10 milliseconds, the bandwidth reaches 
hundreds of Mbit/s per user, and the required 
computing power increases to tens of TFLOPS 
per user, network-edge-cloud collaboration and 
real-time data processing and transmission for 
hundreds of millions of users will be possible, 
but this is a very challenging goal.

  

Physical layer breakthroughs
Both academia and the industry are exploring 
potential breakthroughs at the physical layer, 
including analog computing, non-silicon-based 
computing, novel storage media, and optimized 
chip engineering, to keep improving the energy 
efficiency of computing and storage density. For 
example, quantum computing offers exponential 
advantages over traditional computing in data 
representation and parallel computing. Analog 
optical computing consumes little power yet 
achieves high performance for certain computing 
tasks. 2D materials and carbon nanotubes have 
high carrier mobility and shorter channels, 
and are expected to replace silicon. Significant 
breakthroughs have been made in ferroelectrics, 
phase change materials, and device structures, 
resulting in significant improvement of storage 
density and read/write performance. Multi-layer 
and multi-dimensional optical storage has huge 
potential for long-term storage of cold data. 
Breakthroughs in DNA storage will need to be 
made. These breakthroughs in key technologies 
at the physical layer will revolutionize computing 

and storage.

Analog computing
1) Quantum computing: A technology of 
strategic importance for the future of high-
performance computing

Quantum computing is undergoing rapid 
progress in engineering, and a chip with more 
than 1,000 qubits is expected to appear within 
the next five years. Quantum computing is now 
in an era of noisy intermediate-scale quantum 
(NISQ). The most feasible path forward is 
building a hybrid computing architecture that 
combines the accuracy of classical computers 
and the performance of quantum computing. 
This hybrid computing architecture will be used 
in quantum chemical simulation, quantum 
combinatorial optimization, and quantum 
machine learning, as those are the three 
scenarios that have the greatest commercial 
potential. Quantum chemical simulation can 
provide new computing power for research 
and development of pharmaceuticals and new 
materials. Quantum combinatorial optimization, 
where combinatorial optimization problems are 
encoded as quantum dynamics, can be used to 
optimize logistics scheduling, route planning, 
and network traffic distribution. Quantum 
machine learning will provide a new path for 
accelerating AI computing.

The focus of the next decade should be on 
developing a dedicated NISQ-based quantum 
computer, while continuing to increase the 
number of qubits in a single quantum chip, 
prolong coherence time, and enhance fidelity. 
More efforts should be made to optimize the 
interconnection of quantum chips to enhance 
system scalability, so that sufficient computing 
power will be available to solve those complex 
problems. At the same time, we also need to 
make quantum computing more fault tolerant, 
improve system reliability, optimize quantum 
algorithms for different application scenarios, 
and improve the quantum software stack, while 
reducing circuit depth and complexity. These 
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are part of the broader efforts to bring NISQ-
based quantum computing to commercial 
use. However, building a universal quantum 
computer will be a long, challenging process.

2) Analog optical computing: Competitive in 
certain complex computing tasks

Light propagates at a high speed with negligible 
power consumption. In certain optical systems, 
mathematical models are used to describe 
their associated physical phenomena, such as 
interference, scattering, and reflection. Certain 
computing tasks can be accomplished by 
utilizing the physical characteristics of light, such 
as amplitude and phase, and the interactions 
between light and optical devices. In addition, 
as a boson, a photon allows parallelism in 
degree of freedom, such as wavelength division 
multiplexing, mode division multiplexing, and 
orbital angular momentum (OAM) multiplexing. 
Multi-dimensional parallelism is an important 
direction forward for optical computing. 
Early breakthroughs of optical computing are 
expected to appear in convolution computing, 
Ising model solving, and reservoir computing, 
followed by application in signal processing, 
combinatorial optimization, sequence alignment, 
and AI acceleration.

There are still formidable challenges for the 
commercial application of optical computing, 
such as insertion loss, noise control, 
heterogeneous integration, and co-packaging 
of electronic and optical devices. The drive 
circuits used in optical computing also need 

to be further integrated with optical chips to 
reduce power consumption and area. As optical 
computing and electrical computing each have 
their own advantages, optoelectronic hybrid 
computing architecture is a promising direction 
for future development.

Non-silicon-based computing
1) 2D materials: A potential material to 
extend Moore's law

2D materials offer several advantages, including 
shorter channel length, high mobility, and the 
possibility of heterogeneous integration, and 
are expected to be used as transistor channel 
materials to extend Moore's law as far as 1 nm 
technology node. In addition, 2D materials with 
ultra-low dielectric constants can be used as the 
interconnect isolation materials of integrated 
circuits. 2D materials are expected to be first 
adopted in domains such as optoelectronics and 
sensors, and eventually in large-scale integrated 
circuits and systems.

At present, 2D materials and relevant devices 
are still in the basic research stage, and many 
of the necessary breakthroughs in materials, 
devices, and processes have yet to be made. 
Over the next five years, we need to realize 
industrial-grade wafers made of 2D materials 
and constantly improve their yield. In addition, 
we need to keep optimizing the electrode 
contacts and device structures to improve the 
comprehensive performance of 2D transistors. 
Once these improvements are made, 2D 
materials are expected to be applied in large-
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scale integrated circuits within ten years.

2) Carbon transistors: The most promising 
technology to extend Moore's law

Carbon nanotubes have great potential in both 
high performance and low power consumption 
because of their ultra-high carrier mobility 
and atomic-level thickness. In cases of extreme 
scaling, carbon nanotube transistors are about 
10 times more energy-efficient than silicon-
based transistors. Carbon nanotubes are 
expected to be commercially used in biosensors 
and radio frequency circuits in 3 to 5 years.

The next five years will see more efforts invested 
to improve the fabrication process of carbon 
nanotube materials, reduce surface pollution 
and impurities, and improve material purity 
and carbon nanotube alignment. In addition, 
the contact resistance and interface state of 
these devices need to be optimized to improve 
injection efficiency. Supporting electronic 
design automation (EDA) tools also need to be 
developed. Small-scale integrated circuits can be 
used to verify end-to-end maturity of carbon-
based semiconductors, which are expected to 
be initially applied to flexible circuits. Looking 
ahead to the next decade, when carbon-based 
semiconductors are scaled down to the level 

of advanced silicon-based processes, there will 
be opportunities for large-scale application of 
this technology in high performance and high 
integration scenarios.

Novel storage media
While traditional storage mainly uses magnetic 
media, it is predicted that by 2030, 72% of 
enterprise storage, including both primary and 
secondary storage, will be based on all-flash. 
Furthermore, 82% of enterprise service data 
will require backup. Because of the differences 
between hot, warm, and cold data throughout 
the lifecycle, the evolution of storage media 
will diverge in two directions: higher speed with 
better performance, and massive scale at lower 
cost.

1) Novel media for memory

Currently, hot data is stored in SSDs and 
transmitted to DRAM for processing, because 
the latency of DRAM can be up to 1,000 times 
lower than that of SSDs. However, physical 
conditions limit DRAM from further density or 
voltage expansion. Therefore, neither SSDs nor 
DRAM are the best options for hot data storage. 
There are now many novel media technologies 
for memory, such as PCM, MRAM, ferroelectric 
RAM (FeRAM), and ReRAM, and those media 
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outperform DRAM in performance, capacity, cost, 
lifespan, energy consumption, and scalability. 
They also support byte-level access and 
persistence, making data migration unnecessary. 
Eventually, they will become commonly used 
media for hot data storage, but for now they 
face two major technical challenges:

Capacity: The total amount of hot data in 2030 
will be equal to the total amount of the data 
stored on SSDs today. The capacity density of 
hot data media needs to be increased by at 
least ten times to reach the current level of 
SSDs, which is 1 TB/die. Such media should 
also support on-demand expansion unrestricted 
by processors, memory interfaces, network 
latency, and bandwidth. Media such as FeRAM, 
ReRAM, and MRAM face structural and material 
challenges.

Energy consumption: In the global push toward 
carbon neutrality, there is considerable pressure 
to reduce the power consumption of storage 
media for massive amounts of hot data. Resistor-
based data storage technologies such as PCM 
and ReRAM require high data write voltages and 
therefore consume more power. The operating 
voltage of FeRAM, however, is relatively low, 
and its power consumption per bit is just one 
tenth that of ReRAM and MRAM, and a mere 

hundredth of that of PCM, making FeRAM the 
most promising candidate.

2) High-density NAND flash media

In the future, most hot data will be generated 
from warm data, which means warm data 
will become the largest reservoir of hot data. 
Therefore, warm data media must balance 
performance, capacity, and cost. NANDs will 
replace hard disk drives (HDDs) as the primary 
storage medium for warm data and are evolving 
towards multi-level cells and 3D stacking. The 
biggest challenge is to expand the capacity and 
reduce the cost of NANDs while achieving the 
same level of performance and lifespan as quad-
level cells (QLCs).

Performance and lifespan of multi-level cells: 
For every additional bit a cell stores, the voltage 
needed for the data doubles, reducing read/write 
performance and lifespan by several folds.

3D stacking process: At present, no mainstream 
3D NAND SSDs contain more than 200 layers, 
but by 2030, we are likely to see products that 
stack close to 1,000 layers, and the aspect ratio 
of dielectric through-silicon vias will reach 120:1 
(more than double the current level), making 
processing much more difficult.
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3) Optical storage

In the future, the amount of cold data 
requiring long term storage will increase 
from 1.2 ZB to 26.5 ZB, and their retention 
time will grow by 5–10 times. At the National 
Archives Administration of China, for example, 
the retention time of key file data has been 
extended from 100 years to 500 years, and 
the amount of cold data that needs to be 
stored is expected to grow from 100 PB to 
450 PB. Traditional hard disks and tapes can 
no longer meet such requirements. With the 
ongoing research on codec algorithms as well 
as the read/write mechanisms of transparent 
materials such as quartz glass and organic 
glass, optical storage will become the leading 
storage medium for massive cold data. 
Before that, however, two challenges must be 
overcome:

1. The service life of optical storage media needs 
to be extended tenfold and adapted for use in 
various complex and harsh environments.

2. Compared with Blu-ray, future optical 
storage media are expected to have ten times 
the capacity, perform ten times better, and be 
available at 1/5 the current cost. 
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Call to action

Over the past half-century, computing has accelerated scientific advances and economic development, and 
has been deeply integrated into all aspects of our society. Computing is a resource shared by everyone and will 
be the cornerstone of the future intelligent world. 

Looking ahead to 2030, computing will become both more open and more secure. Every person and every 
organization will be given equal opportunity to build a more innovative computing industry and share in its 
value. 

Let's work together to usher in a new era of computing.
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Acronyms

Acronym Full name

3D 3 Dimensions

AI Artificial Intelligence

API Application Programming Interface

AR Augmented Reality

BP Back Propagation

CDU Coolant Distribution Unit

CERN European Organization for Nuclear Research

CPU Central Processing Unit

CSP Cloud computing Service Provider

D2W Die-to-Wafer

DC Data Center

DNA Deoxyribonucleic Acid

DPU Data Processing Unit

DRAM Dynamic Random Access Memory

EDA Electronic Design Automation

EFLOPS exa Floating-Point Operations Per Second

EIC Electronic Integrated Circuit

FeRAM Ferroelectric Random-Access Memory

FPGA Field Programmable Gate Array

GAN Generative Adversarial Network

HDD Hard Disk Drive

HL-LHC High Luminosity - Large Hadron Collider

HPC High-Performance Computing

ICT Information and Communications Technology

IO Input/Output

KA Kiloampere

MM Molecular Mechanics

MR Mixed Reality

MRAM Magnetoresistive Random-Access Memory

NISQ Noisy Intermediate-Scale Quantum
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NLG Natural Language Generation

NLP Natural Language Processing

O2O Online to Offline

OAM Orbital Angular Momentum

OE Optical Engine

PCM Phase Change Memory

PB Petabyte	

PIC Photonic Integrated Circuit

PIM Processing-In-Memory

PUE Power Usage Effectiveness

QLC Quad-Level Cell

QM Quantum Mechanic

REE Rich Execution Environment

ReRAM Resistive Random-Access Memory

SDK Software Development Kit

SRAM Static Random-Access Memory

SSD Solid State Drives

TEE Trusted Execution Environment

TIM Thermal Interface Material

ToF Time of Flight

TSV Through Silicon Via

UPS Uninterruptible Power Supply

VR Virtual Reality

W2W Wafer to Wafer

WLC Wafer Level Chip

xPU x Processing Unit

XR Extended Reality

YB Yottabyte

ZB Zettabyte

ZT Thermoelectric Figure of Merit
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